Acronym gaddip Name great-dodecahedron prism Cross sections ` ©` Circumradius sqrt[(7+sqrt(5))/8] = 1.074481 General of army ipe Colonel of regiment ipe Externallinks

As abstract polytope gaddip is isomorphic to sissiddip, thereby replacing pentagons by pentagrams resp. replacing gad by sissid and pip by stip. – As such gaddip is a lieutenant.

Incidence matrix according to Dynkin symbol

```x x5o5/2o

. . .   . | 24 |  1  5 |  5  5 |  5 1
----------+----+-------+-------+-----
x . .   . |  2 | 12  * |  5  0 |  5 0
. x .   . |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x x .   . |  4 |  2  2 | 30  * |  2 0
. x5o   . |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x x5o   . ♦ 10 |  5 10 |  5  2 | 12 *
. x5o5/2o ♦ 12 |  0 30 |  0 12 |  * 2
```

```x x5o5/3o

. . .   . | 24 |  1  5 |  5  5 |  5 1
----------+----+-------+-------+-----
x . .   . |  2 | 12  * |  5  0 |  5 0
. x .   . |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x x .   . |  4 |  2  2 | 30  * |  2 0
. x5o   . |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x x5o   . ♦ 10 |  5 10 |  5  2 | 12 *
. x5o5/3o ♦ 12 |  0 30 |  0 12 |  * 2
```

```x x5/4o5/2o

. .   .   . | 24 |  1  5 |  5  5 |  5 1
------------+----+-------+-------+-----
x .   .   . |  2 | 12  * |  5  0 |  5 0
. x   .   . |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x x   .   . |  4 |  2  2 | 30  * |  2 0
. x5/4o   . |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x x5/4o   . ♦ 10 |  5 10 |  5  2 | 12 *
. x5/4o5/2o ♦ 12 |  0 30 |  0 12 |  * 2
```

```x x5/4o5/3o

. .   .   . | 24 |  1  5 |  5  5 |  5 1
------------+----+-------+-------+-----
x .   .   . |  2 | 12  * |  5  0 |  5 0
. x   .   . |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x x   .   . |  4 |  2  2 | 30  * |  2 0
. x5/4o   . |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x x5/4o   . ♦ 10 |  5 10 |  5  2 | 12 *
. x5/4o5/3o ♦ 12 |  0 30 |  0 12 |  * 2
```

```xx5oo5/2oo&#x   → height = 1

o.5o.5/2o.    | 12  * |  5  1  0 |  5  5  0 | 1  5 0
.o5.o5/2.o    |  * 12 |  0  1  5 |  0  5  5 | 0  5 1
--------------+-------+----------+----------+-------
x. ..   ..    |  2  0 | 30  *  * |  2  1  0 | 1  2 0
oo5oo5/2oo&#x |  1  1 |  * 12  * |  0  5  0 | 0  5 0
.x ..   ..    |  0  2 |  *  * 30 |  0  1  2 | 0  2 1
--------------+-------+----------+----------+-------
x.5o.   ..    |  5  0 |  5  0  0 | 12  *  * | 1  1 0
xx ..   ..&#x |  2  2 |  1  2  1 |  * 30  * | 0  2 0
.x5.o   ..    |  0  5 |  0  0  5 |  *  * 12 | 0  1 1
--------------+-------+----------+----------+-------
x.5o.5/2o.    ♦ 12  0 | 30  0  0 | 12  0  0 | 1  * *
xx5oo   ..&#x ♦  5  5 |  5  5  5 |  1  5  1 | * 12 *
.x5.o5/2.o    ♦  0 12 |  0  0 30 |  0  0 12 | *  * 1
```