Acronym gircope, K-4.125 Name great-rhombicuboctahedron prism Segmentochoron display Cross sections ` ©` Circumradius sqrt[(7+3 sqrt(2))/2] = 2.370932 Coordinates ((1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations in all but last coord., all changes of sign Externallinks

As abstract polytope gircope is isomorphic to quitcope, thereby replacing octagons by octagrams, resp. replacing op by stop and girco by quitco.

Incidence matrix according to Dynkin symbol

```x x3x4x

. . . . | 96 |  1  1  1  1 |  1  1  1  1  1  1 | 1  1 1 1
--------+----+-------------+-------------------+---------
x . . . |  2 | 48  *  *  * |  1  1  1  0  0  0 | 1  1 1 0
. x . . |  2 |  * 48  *  * |  1  0  0  1  1  0 | 1  1 0 1
. . x . |  2 |  *  * 48  * |  0  1  0  1  0  1 | 1  0 1 1
. . . x |  2 |  *  *  * 48 |  0  0  1  0  1  1 | 0  1 1 1
--------+----+-------------+-------------------+---------
x x . . |  4 |  2  2  0  0 | 24  *  *  *  *  * | 1  1 0 0
x . x . |  4 |  2  0  2  0 |  * 24  *  *  *  * | 1  0 1 0
x . . x |  4 |  2  0  0  2 |  *  * 24  *  *  * | 0  1 1 0
. x3x . |  6 |  0  3  3  0 |  *  *  * 16  *  * | 1  0 0 1
. x . x |  4 |  0  2  0  2 |  *  *  *  * 24  * | 0  1 0 1
. . x4x |  8 |  0  0  4  4 |  *  *  *  *  * 12 | 0  0 1 1
--------+----+-------------+-------------------+---------
x x3x . ♦ 12 |  6  6  6  0 |  3  3  0  2  0  0 | 8  * * *
x x . x ♦  8 |  4  4  0  4 |  2  0  2  0  2  0 | * 12 * *
x . x4x ♦ 16 |  8  0  8  8 |  0  4  4  0  0  2 | *  * 6 *
. x3x4x ♦ 48 |  0 24 24 24 |  0  0  0  8 12  6 | *  * * 2
```

```xx3xx4xx&#x   → height = 1
(girco || girco)

o.3o.4o.    | 48  * |  1  1  1  1  0  0  0 | 1  1 1  1  1  1 0  0 0 | 1 1  1 1 0
.o3.o4.o    |  * 48 |  0  0  0  1  1  1  1 | 0  0 0  1  1  1 1  1 1 | 0 1  1 1 1
------------+-------+----------------------+------------------------+-----------
x. .. ..    |  2  0 | 24  *  *  *  *  *  * | 1  1 0  1  0  0 0  0 0 | 1 1  1 0 0
.. x. ..    |  2  0 |  * 24  *  *  *  *  * | 1  0 1  0  1  0 0  0 0 | 1 1  0 1 0
.. .. x.    |  2  0 |  *  * 24  *  *  *  * | 0  1 1  0  0  1 0  0 0 | 1 0  1 1 0
oo3oo4oo&#x |  1  1 |  *  *  * 48  *  *  * | 0  0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x .. ..    |  0  2 |  *  *  *  * 24  *  * | 0  0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .x ..    |  0  2 |  *  *  *  *  * 24  * | 0  0 0  0  1  0 1  0 1 | 0 1  0 1 1
.. .. .x    |  0  2 |  *  *  *  *  *  * 24 | 0  0 0  0  0  1 0  1 1 | 0 0  1 1 1
------------+-------+----------------------+------------------------+-----------
x.3x. ..    |  6  0 |  3  3  0  0  0  0  0 | 8  * *  *  *  * *  * * | 1 1  0 0 0
x. .. x.    |  4  0 |  2  0  2  0  0  0  0 | * 12 *  *  *  * *  * * | 1 0  1 0 0
.. x.4x.    |  8  0 |  0  4  4  0  0  0  0 | *  * 6  *  *  * *  * * | 1 0  0 1 0
xx .. ..&#x |  2  2 |  1  0  0  2  1  0  0 | *  * * 24  *  * *  * * | 0 1  1 0 0
.. xx ..&#x |  2  2 |  0  1  0  2  0  1  0 | *  * *  * 24  * *  * * | 0 1  0 1 0
.. .. xx&#x |  2  2 |  0  0  1  2  0  0  1 | *  * *  *  * 24 *  * * | 0 0  1 1 0
.x3.x ..    |  0  6 |  0  0  0  0  3  3  0 | *  * *  *  *  * 8  * * | 0 1  0 0 1
.x .. .x    |  0  4 |  0  0  0  0  2  0  2 | *  * *  *  *  * * 12 * | 0 0  1 0 1
.. .x4.x    |  0  8 |  0  0  0  0  0  4  4 | *  * *  *  *  * *  * 6 | 0 0  0 1 1
------------+-------+----------------------+------------------------+-----------
x.3x.4x.    ♦ 48  0 | 24 24 24  0  0  0  0 | 8 12 6  0  0  0 0  0 0 | 1 *  * * *
xx3xx ..&#x ♦  6  6 |  3  3  0  6  3  3  0 | 1  0 0  3  3  0 1  0 0 | * 8  * * *
xx .. xx&#x ♦  4  4 |  2  0  2  4  2  0  2 | 0  1 0  2  0  2 0  1 0 | * * 12 * *
.. xx4xx&#x ♦  8  8 |  0  4  4  8  0  4  4 | 0  0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.x4.x    ♦  0 48 |  0  0  0  0 24 24 24 | 0  0 0  0  0  0 8 12 6 | * *  * * 1
```

 © 2004-2013 top of page