Acronym grit
Name great rhombated tesseract,
cantitruncated tesseract

Cross sections
` ©`
Vertex figure
` ©`
Vertex layers
 Layer Symmetry Subsymmetries o3o3o4o o3o3o . o3o . o o . o4o . o3o4o 1 o3x3x4x o3x3x .tut first o3x . xtrip first o . x4x{8} first . x3x4xgirco first 2 o3x3w . o3u . w x . u4x . o3u4x 3 o3u3w . x3x . Q u . x4w . o3x4w 4 o3X3x . o3X . w x . o4Q . o3x4w 5a x3x3X . o3Y . x X . x4w . o3u4x 5b x3w . Q 6a x3w3u . x3Y . x w . o4Q . x3x4xopposite girco 6b u3w . Q Y . u4x 7 u3w3x . u3X . w Z . x4x 8a X3x3x . X3x . Q w . o4Q 8b Y . u4x 9 x3X3o . x3X . Q X . x4w 10 w3u3o . X3u . w x . o4Q 11a w3x3o . Y3x . x u . x4w 11b w3u . Q 12a x3x3o .opposite tut Y3o . x x . u4x 12b w3x . Q 13 X3o . w o . x4xopposite {8} 14 x3x . Q 15 u3o . w 16 x3o . xopposite trip
(X=2x+q=u+q=x+w, Q=x+2q=w+q), Y=3x+q=u+w, Z=4x+q
Lace city
in approx. ASCII-art
 ``` ©   ``` ```x4x u4x x4w x4w u4x x4x u4x o4Q o4Q u4x x4w o4Q o4Q x4w x4w o4Q o4Q x4w u4x o4Q o4Q u4x x4x u4x x4w x4w u4x x4x ```
```                    x3o            x3o

u3o                                u3o

x3x                                                    x3x
X3o                                X3o

w3x                 Y3o            Y3o                 w3x

w3u                 Y3x            Y3x                 w3u

X3u                                X3u
x3X                                                    x3X
X3x                                                    X3x
u3X                                u3X

u3w                 x3Y            x3Y                 u3w

x3w                 o3Y            o3Y                 x3w

o3X                                o3X
x3x                                                    x3x

o3u                                o3u

o3x            o3x
```
Coordinates ((1+2 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: girco trip tut grit 8 32 16
)
Confer 2grit
External

As abstract polytope grit is isomorphic to gaqrit, thereby replacing the octagons by octagrams, resp. replacing girco by quitco.

Incidence matrix according to Dynkin symbol

```o3x3x4x

. . . . | 192 |   2  1  1 |  1  2  2  1 |  1  1 2
--------+-----+-----------+-------------+--------
. x . . |   2 | 192  *  * |  1  1  1  0 |  1  1 1
. . x . |   2 |   * 96  * |  0  2  0  1 |  1  0 2
. . . x |   2 |   *  * 96 |  0  0  2  1 |  0  1 2
--------+-----+-----------+-------------+--------
o3x . . |   3 |   3  0  0 | 64  *  *  * |  1  1 0
. x3x . |   6 |   3  3  0 |  * 64  *  * |  1  0 1
. x . x |   4 |   2  0  2 |  *  * 96  * |  0  1 1
. . x4x |   8 |   0  4  4 |  *  *  * 24 |  0  0 2
--------+-----+-----------+-------------+--------
o3x3x . ♦  12 |  12  6  0 |  4  4  0  0 | 16  * *
o3x . x ♦   6 |   6  0  3 |  2  0  3  0 |  * 32 *
. x3x4x ♦  48 |  24 24 24 |  0  8 12  6 |  *  * 8
```

```o3/2x3x4x

.   . . . | 192 |   2  1  1 |  1  2  2  1 |  1  1 2
----------+-----+-----------+-------------+--------
.   x . . |   2 | 192  *  * |  1  1  1  0 |  1  1 1
.   . x . |   2 |   * 96  * |  0  2  0  1 |  1  0 2
.   . . x |   2 |   *  * 96 |  0  0  2  1 |  0  1 2
----------+-----+-----------+-------------+--------
o3/2x . . |   3 |   3  0  0 | 64  *  *  * |  1  1 0
.   x3x . |   6 |   3  3  0 |  * 64  *  * |  1  0 1
.   x . x |   4 |   2  0  2 |  *  * 96  * |  0  1 1
.   . x4x |   8 |   0  4  4 |  *  *  * 24 |  0  0 2
----------+-----+-----------+-------------+--------
o3/2x3x . ♦  12 |  12  6  0 |  4  4  0  0 | 16  * *
o3/2x . x ♦   6 |   6  0  3 |  2  0  3  0 |  * 32 *
.   x3x4x ♦  48 |  24 24 24 |  0  8 12  6 |  *  * 8
```

```xoooox3xuxxux4xxwwxx&#xt   → height(1,2) = height(2,3) = height(4,5) = height(5,6) = 1/sqrt(2) = 0.707107
height(3,4) = 1
(girco || pseudo (x,u)-tic || pseudo (w,x)-tic || pseudo (w,x)-tic || pseudo (x,u)-tic || girco)

o.....3o.....4o.....      & | 96  *  * |  1  1  1  1  0  0  0  0 |  1  1  1  1  1  1  0  0  0 | 1  1  1 1 0
.o....3.o....4.o....      & |  * 48  * |  0  0  0  2  1  1  0  0 |  0  0  0  1  2  2  1  0  0 | 0  1  1 2 0
..o...3..o...4..o...      & |  *  * 48 |  0  0  0  0  0  1  2  1 |  0  0  0  0  2  0  1  1  2 | 0  1  0 2 1
----------------------------+----------+-------------------------+----------------------------+------------
x..... ...... ......      & |  2  0  0 | 48  *  *  *  *  *  *  * |  1  1  0  1  0  0  0  0  0 | 1  1  1 0 0
...... x..... ......      & |  2  0  0 |  * 48  *  *  *  *  *  * |  1  0  1  0  1  0  0  0  0 | 1  1  0 1 0
...... ...... x.....      & |  2  0  0 |  *  * 48  *  *  *  *  * |  0  1  1  0  0  1  0  0  0 | 1  0  1 1 0
oo....3oo....4oo....&#x   & |  1  1  0 |  *  *  * 96  *  *  *  * |  0  0  0  1  1  1  0  0  0 | 0  1  1 1 0
...... ...... .x....      & |  0  2  0 |  *  *  *  * 24  *  *  * |  0  0  0  0  0  2  1  0  0 | 0  0  1 2 0
.oo...3.oo...4.oo...&#x   & |  0  1  1 |  *  *  *  *  * 48  *  * |  0  0  0  0  2  0  1  0  0 | 0  1  0 2 0
...... ..x... ......      & |  0  0  2 |  *  *  *  *  *  * 48  * |  0  0  0  0  1  0  0  1  1 | 0  1  0 1 1
..oo..3..oo..4..oo..&#x     |  0  0  2 |  *  *  *  *  *  *  * 24 |  0  0  0  0  0  0  1  0  2 | 0  0  0 2 1
----------------------------+----------+-------------------------+----------------------------+------------
x.....3x..... ......      & |  6  0  0 |  3  3  0  0  0  0  0  0 | 16  *  *  *  *  *  *  *  * | 1  1  0 0 0
x..... ...... x.....      & |  4  0  0 |  2  0  2  0  0  0  0  0 |  * 24  *  *  *  *  *  *  * | 1  0  1 0 0
...... x.....4x.....      & |  8  0  0 |  0  4  4  0  0  0  0  0 |  *  * 12  *  *  *  *  *  * | 1  0  0 1 0
xo.... ...... ......&#x   & |  2  1  0 |  1  0  0  2  0  0  0  0 |  *  *  * 48  *  *  *  *  * | 0  1  1 0 0
...... xux... ......&#xt  & |  2  2  2 |  0  1  0  2  0  2  1  0 |  *  *  *  * 48  *  *  *  * | 0  1  0 1 0
...... ...... xx....&#x   & |  2  2  0 |  0  0  1  2  1  0  0  0 |  *  *  *  *  * 48  *  *  * | 0  0  1 1 0
...... ...... .xwwx.&#xt    |  0  4  4 |  0  0  0  0  2  4  0  2 |  *  *  *  *  *  * 12  *  * | 0  0  0 2 0
..o...3..x... ......      & |  0  0  3 |  0  0  0  0  0  0  3  0 |  *  *  *  *  *  *  * 16  * | 0  1  0 0 1
...... ..xx.. ......&#x     |  0  0  4 |  0  0  0  0  0  0  2  2 |  *  *  *  *  *  *  *  * 24 | 0  0  0 1 1
----------------------------+----------+-------------------------+----------------------------+------------
x.....3x.....4x.....      & ♦ 48  0  0 | 24 24 24  0  0  0  0  0 |  8 12  6  0  0  0  0  0  0 | 2  *  * * *
xoo...3xux... ......&#xt  & ♦  6  3  3 |  3  3  0  6  0  3  3  0 |  1  0  0  3  3  0  0  1  0 | * 16  * * *
xo.... ...... xx....&#x   & ♦  4  2  0 |  2  0  2  4  1  0  0  0 |  0  1  0  2  0  2  0  0  0 | *  * 24 * *
...... xuxxux4xxwwxx&#xt    ♦ 16 16 16 |  0  8  8 16  8 16  8  8 |  0  0  2  0  8  8  4  0  4 | *  *  * 6 *
..oo..3..xx.. ......&#x     ♦  0  0  6 |  0  0  0  0  0  0  6  3 |  0  0  0  0  0  0  0  2  3 | *  *  * * 8
```