Acronym sidtaxhi
Name small ditetrahedronary hexacosihecatonicosachoron
Cross sections
` ©`
General of army hi
Colonel of regiment (is itself locally convex – uniform polychoral members:
& others)
External

As abstract polytope sidtaxhi is isomorphic to gadtaxhi, thereby replacing pentagrams by pentagons, resp. sidtid by gidtid.

Incidence matrix according to Dynkin symbol

```o3o3o5/2x3*b

. . .   .    | 600 ♦   12 |   6   12 |   4   4
-------------+-----+------+----------+--------
. . .   x    |   2 | 3600 |   1    2 |   1   2
-------------+-----+------+----------+--------
. . o5/2x    |   5 |    5 | 720    * |   0   2
. o .   x3*b |   3 |    3 |   * 2400 |   1   1
-------------+-----+------+----------+--------
o3o .   x3*b ♦   4 |    6 |   0    4 | 600   *
. o3o5/2x3*b ♦  20 |   60 |  12   20 |   * 120
```

```o3o3o5/3x3/2*b

. . .   .      | 600 ♦   12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. . .   x      |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. . o5/3x      |   5 |    5 | 720    * |   0   2
. o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o .   x3/2*b ♦   4 |    6 |   0    4 | 600   *
. o3o5/3x3/2*b ♦  20 |   60 |  12   20 |   * 120
```

```o3o3/2o5/2x3/2*b

. .   .   .      | 600 ♦   12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
. .   .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
. .   o5/2x      |   5 |    5 | 720    * |   0   2
. o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3o   .   x3/2*b ♦   4 |    6 |   0    4 | 600   *
. o3/2o5/2x3/2*b ♦  20 |   60 |  12   20 |   * 120
```

```o3o3/2o5/3x3*b

. .   .   .    | 600 ♦   12 |   6   12 |   4   4
---------------+-----+------+----------+--------
. .   .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
. .   o5/3x    |   5 |    5 | 720    * |   0   2
. o   .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3o   .   x3*b ♦   4 |    6 |   0    4 | 600   *
. o3/2o5/3x3*b ♦  20 |   60 |  12   20 |   * 120
```

```o3/2o3o5/2x3*b

.   . .   .    | 600 ♦   12 |   6   12 |   4   4
---------------+-----+------+----------+--------
.   . .   x    |   2 | 3600 |   1    2 |   1   2
---------------+-----+------+----------+--------
.   . o5/2x    |   5 |    5 | 720    * |   0   2
.   o .   x3*b |   3 |    3 |   * 2400 |   1   1
---------------+-----+------+----------+--------
o3/2o .   x3*b ♦   4 |    6 |   0    4 | 600   *
.   o3o5/2x3*b ♦  20 |   60 |  12   20 |   * 120
```

```o3/2o3o5/3x3/2*b

.   . .   .      | 600 ♦   12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   . .   x      |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   . o5/3x      |   5 |    5 | 720    * |   0   2
.   o .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o .   x3/2*b ♦   4 |    6 |   0    4 | 600   *
.   o3o5/3x3/2*b ♦  20 |   60 |  12   20 |   * 120
```

```o3/2o3/2o5/2x3/2*b

.   .   .   .      | 600 ♦   12 |   6   12 |   4   4
-------------------+-----+------+----------+--------
.   .   .   x      |   2 | 3600 |   1    2 |   1   2
-------------------+-----+------+----------+--------
.   .   o5/2x      |   5 |    5 | 720    * |   0   2
.   o   .   x3/2*b |   3 |    3 |   * 2400 |   1   1
-------------------+-----+------+----------+--------
o3/2o   .   x3/2*b ♦   4 |    6 |   0    4 | 600   *
.   o3/2o5/2x3/2*b ♦  20 |   60 |  12   20 |   * 120
```

```o3/2o3/2o5/3x3*b

.   .   .   .    | 600 ♦   12 |   6   12 |   4   4
-----------------+-----+------+----------+--------
.   .   .   x    |   2 | 3600 |   1    2 |   1   2
-----------------+-----+------+----------+--------
.   .   o5/3x    |   5 |    5 | 720    * |   0   2
.   o   .   x3*b |   3 |    3 |   * 2400 |   1   1
-----------------+-----+------+----------+--------
o3/2o   .   x3*b ♦   4 |    6 |   0    4 | 600   *
.   o3/2o5/3x3*b ♦  20 |   60 |  12   20 |   * 120
```

```o3o3o5β

both( . . . . ) | 600 ♦   12 |   6   12 |   4   4
----------------+-----+------+----------+--------
sefa( . . o5β ) |   2 | 3600 |   1    2 |   2   1
----------------+-----+------+----------+--------
. . o5β   ♦   5 |    5 | 720    * |   2   0
sefa( . o3o5β ) |   3 |    3 |   * 2400 |   1   1
----------------+-----+------+----------+--------
. o3o5β   ♦  20 |   60 |  12   20 | 120   *
sefa( o3o3o5β ) ♦   4 |    6 |   0    4 |   * 600
```