Acronym srawv hixhi Name small retrosphenoverted hecatonicosihexacosihecatonicosachoron Circumradius sqrt[19+8 sqrt(5)] = 6.073594 General of army srix Colonel of regiment srix Externallinks

As abstract polytope srawv hixhi is isomorphic to garawv hixhi, thereby replacing pentagons by pentagrams, respectively ti by tiggy and id by gid.

Incidence matrix according to Dynkin symbol

```o5x3x3o3/2*b

. . . .      | 3600 |    4    2 |    2    4    2    1 |   2   1   2
-------------+------+-----------+---------------------+------------
. x . .      |    2 | 7200    * |    1    1    1    0 |   1   1   1
. . x .      |    2 |    * 3600 |    0    2    0    1 |   1   0   2
-------------+------+-----------+---------------------+------------
o5x . .      |    5 |    5    0 | 1440    *    *    * |   1   1   0
. x3x .      |    6 |    3    3 |    * 2400    *    * |   1   0   1
. x . o3/2*b |    3 |    3    0 |    *    * 2400    * |   0   1   1
. . x3o      |    3 |    0    3 |    *    *    * 1200 |   0   0   2
-------------+------+-----------+---------------------+------------
o5x3x .      ♦   60 |   60   30 |   12   20    0    0 | 120   *   *
o5x . o3/2*b ♦   30 |   60    0 |   12    0   20    0 |   * 120   *
. x3x3o3/2*b ♦   12 |   12   12 |    0    4    4    4 |   *   * 600
```

```o5x3x3/2o3*b

. . .   .    | 3600 |    4    2 |    2    4    2    1 |   2   1   2
-------------+------+-----------+---------------------+------------
. x .   .    |    2 | 7200    * |    1    1    1    0 |   1   1   1
. . x   .    |    2 |    * 3600 |    0    2    0    1 |   1   0   2
-------------+------+-----------+---------------------+------------
o5x .   .    |    5 |    5    0 | 1440    *    *    * |   1   1   0
. x3x   .    |    6 |    3    3 |    * 2400    *    * |   1   0   1
. x .   o3*b |    3 |    3    0 |    *    * 2400    * |   0   1   1
. . x3/2o    |    3 |    0    3 |    *    *    * 1200 |   0   0   2
-------------+------+-----------+---------------------+------------
o5x3x   .    ♦   60 |   60   30 |   12   20    0    0 | 120   *   *
o5x .   o3*b ♦   30 |   60    0 |   12    0   20    0 |   * 120   *
. x3x3/2o3*b ♦   12 |   12   12 |    0    4    4    4 |   *   * 600
```

```o5/4x3x3o3/2*b

.   . . .      | 3600 |    4    2 |    2    4    2    1 |   2   1   2
---------------+------+-----------+---------------------+------------
.   x . .      |    2 | 7200    * |    1    1    1    0 |   1   1   1
.   . x .      |    2 |    * 3600 |    0    2    0    1 |   1   0   2
---------------+------+-----------+---------------------+------------
o5/4x . .      |    5 |    5    0 | 1440    *    *    * |   1   1   0
.   x3x .      |    6 |    3    3 |    * 2400    *    * |   1   0   1
.   x . o3/2*b |    3 |    3    0 |    *    * 2400    * |   0   1   1
.   . x3o      |    3 |    0    3 |    *    *    * 1200 |   0   0   2
---------------+------+-----------+---------------------+------------
o5/4x3x .      ♦   60 |   60   30 |   12   20    0    0 | 120   *   *
o5/4x . o3/2*b ♦   30 |   60    0 |   12    0   20    0 |   * 120   *
.   x3x3o3/2*b ♦   12 |   12   12 |    0    4    4    4 |   *   * 600
```

```o5/4x3x3/2o3*b

.   . .   .    | 3600 |    4    2 |    2    4    2    1 |   2   1   2
---------------+------+-----------+---------------------+------------
.   x .   .    |    2 | 7200    * |    1    1    1    0 |   1   1   1
.   . x   .    |    2 |    * 3600 |    0    2    0    1 |   1   0   2
---------------+------+-----------+---------------------+------------
o5/4x .   .    |    5 |    5    0 | 1440    *    *    * |   1   1   0
.   x3x   .    |    6 |    3    3 |    * 2400    *    * |   1   0   1
.   x .   o3*b |    3 |    3    0 |    *    * 2400    * |   0   1   1
.   . x3/2o    |    3 |    0    3 |    *    *    * 1200 |   0   0   2
---------------+------+-----------+---------------------+------------
o5/4x3x   .    ♦   60 |   60   30 |   12   20    0    0 | 120   *   *
o5/4x .   o3*b ♦   30 |   60    0 |   12    0   20    0 |   * 120   *
.   x3x3/2o3*b ♦   12 |   12   12 |    0    4    4    4 |   *   * 600
```

```β3o3x5o

both( . . . . ) | 3600 |    4    2 |    2    2    1    4 |   1   2   2
----------------+------+-----------+---------------------+------------
both( . . x . ) |    2 | 7200    * |    1    1    0    1 |   1   1   1
sefa( β3o . . ) |    2 |    * 3600 |    0    0    1    2 |   0   2   1
----------------+------+-----------+---------------------+------------
both( . o3x . ) |    3 |    3    0 | 2400    *    *    * |   1   1   0
both( . . x5o ) |    5 |    5    0 |    * 1440    *    * |   1   0   1
β3o . .   ♦    3 |    0    3 |    *    * 1200    * |   0   2   0
sefa( β3o3x . ) |    6 |    3    3 |    *    *    * 2400 |   0   1   1
----------------+------+-----------+---------------------+------------
both( . o3x5o ) ♦   30 |   60    0 |   20   12    0    0 | 120   *   *
β3o3x .   ♦   12 |   12   12 |    4    0    4    4 |   * 600   *
sefa( β3o3x5o ) ♦   60 |   60   30 |    0   12    0   20 |   *   * 120
```