Convex Segmentochora

Dr. Richard Klitzing r.klitzing@sdz-medien.de

updated version (June 2015) of preprint (August 2001), published in: Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000

Abstract

Polytopes with all vertices both (A) on a (hyper-) sphere and (B) on a pair of parallel (hyper-) planes, and further (C) with all edges of equal length I will call segmentotopes. Moreover, in dimensions 2, 3 and 4 names like segmento*gon*, segmento*hedron*, and segmento*choron* could be used. In this article the *convex* segmentotopes up to dimension 4 are listed.

1 Introduction

About 150 years of highdimensional research on polytopes have passed. The regular ones are well-known since those days: in 1852 L. Schlaefli completed his monograph on polyschemes. About 20 years after N. Johnson in 1966 had published the set of convex polyhedra with regular faces, Mrs. R. Blind had done the corresponding research in higher dimensions for polytopes with regular facets. The convex uniform ones of dimension 4 are readily listed on the website http://member.aol.com/_ht_b/Polycell/uniform.html¹, and the complete list of all uniform ones of dimension 4 is still ongoing (J. Bowers and G. Olshevsky).

Sure, polychora, i.e. polytopes of dimension 4, are not so easy to visualize. This is especially due to the fact that for this attempt the 4th dimension has to be projected somehow into the span of the other 3 directions. One possibility, to do this, works rather well for figures with just one edge length. It shows the 4th dimension as a contraction. In this projection especially monostratic figures, i.e. figures with just one layer with respect to (at least) one direction, are easily illustrated by 2 concentric polyhedra, standing for the bottom and the top of the layer. The space inbetween will then be filled accordingly to the projection of the latteral cells.

Figure 1: icosahedron atop cube

¹ Meanwhile archived at http://web.archive.org/web/20070204075028/members.aol.com/Polycell/uniform.html.

Figure 1 shows an example of such a projection of a segmentochoron. The 2 parallel polyhedra are a cube (solid) respectively an icosahedron (frame). Those edges of the latter which are parallel to the cube are joined to the faces of the cube by trigonal prisms. The vertices of the cube are joined to 8 of the icosahedral faces by tetrahedra. The remaining 12 icosahedral faces are joined to the still open squares of the trigonal prisms by square pyramids. Thus the cell count of that segmentochoron is: 8 tetrahedra + 12 square pyramids + 6 trigonal prisms + 1 cube + 1 icosahedron. In this Figure the arbitrary relative scaling was chosen such that the edges of cube and icosahedron do intersect in this projection. - Figure 1 was produced by Robert J. MacG. Dawson (robert.dawson@stmarys.ca).

Figure 2: bistratic projection of an icositetrachoron: octahedron atop (pseudo) cuboctahedron atop octahedron

Figure 2 was found on http://www.math.tu-berlin.de/diskregeom/polymake/doc/polytope.gif. It shows the skelleton of the regular icositetrachoron. In this bistratic projection it is visible as octahedron atop (pseudo) cuboctahedron atop octahedron. The equatorial cuboctahedron is marked as pseudo, as it is not a facet of the icositetrachoron; just as the equatorial square is not a face of the octahedron, which alike could be called 'point atop (pseudo) square atop point'. Nevertheless, both the inner and the outer half of the bistratic projected icositetrachoron are projections of valid segmentochora, which are monostratic. Then square faces of the cuboctahedron are joined to the vertices of the parallel octahedra by square pyramids (halves of octahedra) and the trigons of the cuboctahedron to the faces of the parallel octahedra by trigonal antiprisms (i.e. octahedra). Thus those segmentochora consist of 1+8 octahedra + 6 square pyramids + 1 cuboctahedron.

Polychora which are monostratic are the topic of this article. Especially we look at *convex segmentochora*. In general segmentotopes are defined to be polytopes (thereby following all implications thereof) and additionally have

- all vertices on a single hypersphere,
- all vertices on a (not necessarily unique) pair of parallel hyperplanes,
- all edges of unit length.

The first condition shows that the circumradius is well defined. Moreover, in union with condition 3 this implies that all faces have to be regular. Condition 2 implies that all edges, which don't lye completely within one of the hyperplanes, will join both, i.e. having one vertex each in either plane. Thence segmentotopes have to be monostratic. We restrict ourselves to *convex* segmentotopes, as their count grows rather fast with the dimension.

From this definition it follows that the top and bottom figures too are polytopes with all vertices on a single circumsphere. Thus, for convex segmentochora we have as possible top and bottom figures the following set:

Top or bottom figure	Circumradius
Point	0 (shear?)
Line	1/2 (shear?)
Trigon	1/sqrt(3) = 0.577350 (shear?)
Square	1/sqrt(2) = 0.707107 (shear?)
Pentagon	sqrt((5+sqrt(5))/10) = 0.850651 (shear?)
Hexagon	1 (shear?)
Octagon	sart(1+1/sart(2)) = 1.306563 (shear?)
Decagon	(1+sort(5))/2 = 1.618034 (shear?)
N-gon: N>6 not 8 10	$1/(2^{s} \sin(n)/n)$ (shear?)
Tetrahedron	$r_{(2,3)}(p_{(1,1)}) = 0.612372$
Octabodron	1/cort(2) = 0.707107
Cubo	1/5qn(2) = 0.707107
	Sqrt((5/4) = 0.000023
Dedeeebedron	Sqrt((0+Sqrt(5))/0) = 0.951057
Dudecanedron	Sqn((9+3 Sqn(5))/8) = 1.401259
Cuboctanedron	
	(1+sqrt(5))/2 = 1.618034
Iruncated tetranedron	sqrt(11/8) = 1.1/2604
Iruncated octahedron	sqrt(5/2) = 1.581139
Iruncated cube	sqrt(7+4*sqrt(2))/2 = 1.778824
Truncated icosahedron	sqrt((29+9*sqrt(5))/8) = 2.478019
Truncated dodecahedron	sqrt((37+15*sqrt(5))/8) = 2.969445
Rhombicuboctahedron	sqrt((5+sqrt(8))/4) = 1.398966
Rhombicosidodecahedron	sqrt(sqrt(5)+11/4) = 2.232951
Truncated cuboctahedron	sqrt(13+6*sqrt(2))/2 = 2.317611
Truncated icosidodecahedron	sqrt(31+12*sqrt(5))/2 = 3.802394
Snub cuboctahedron	$sqrt((1-cos^{2}(x))/(3-4*cos^{2}(x))) = 1.343713$
	$[\cos(x) = (cbrt(1+sqrt(11/27))+cbrt(1-$
	sqrt(11/27)))/cbrt(sqrt(128)) = 0.842509]
Snub icosidodecahedron	$sqrt((1-cos^{2}(x))/(3-4*cos^{2}(x))) = 2.155837$
	$[\cos(x) = (cbrt(9+9*sqrt(5)+sqrt(102$
	+162*sqrt(5)))+cbrt(9+9*sqrt(5)-sqrt(102
	+162*sqrt(5))))/cbrt(288) = 0.857781]
4-Pyramid (J1)	1/sqrt(2) = 0.707107
5-Pyramid (J2)	sqrt((5+sqrt(5))/8) = 0.951057
3-Cupola (J3)	1
4-Cupola (J4)	sqrt((5+sqrt(8))/4) = 1.398966
5-Cupola (J5)	sqrt(sqrt(5)+11/4) = 2.232951
Rotunda (J6)	(1+sqrt(5))/2 = 1.618034
Gyroelongated 5-pyramid (J11)	sqrt((5+sqrt(5))/8) = 0.951057
Elongated 4-cupola (J19)	sqrt((5+sqrt(8))/4) = 1.398966
Trigonal orthobicupola (J27)	1
Orthobirotunda (J34)	(1+sqrt(5))/2 = 1.618034
Gyrated rhombicuboctahedron (J37)	sart((5+sart(8))/4) = 1.398966
Metabidiminished icosahedron (J62)	sart((5+sart(5))/8) = 0.951057
Tridiminished icosahedron (J63)	sqrt((5+sqrt(5))/8) = 0.951057
Gyrated rhombicosidodecahedron (J72)	sqrt(sqrt(5)+11/4) = 2.232951
Parabigyrated rhombicosidodecahedron (J73)	sart(sart(5)+11/4) = 2.232951
Metabigyrated rhombicosidodecabedron (J74)	sart(sart(5)+11/4) = 2.232951
Trigvrated rhombicosidodecabedron (175)	sart(sart(5)+11/4) = 2.232951
Diminished rhombicosidodecahedron (176)	sqrt(sqrt(5)+11/4) = 2.232351
Diminished naragyrated rhombicosidodecahedron (177)	sqrt(sqrt(5)+11/4) = 2.232351
Diminished paragyrated mombleosidodecanedion (077)	sqrt(sqrt(5)+11/4) = 2.222051
Diminished higyrated rhombicosidodooabodron (170)	sqrt(sqrt(5)+11/4) = 2.202301
Diministred bigyrated monbicosidodecanedron (179)	Sqrt(Sqrt(5)+11/4) = 2.252951
r arabidiminished mornicosidodooshadrar (101)	sqrt(sqrt(5)+11/4) = 2.232331
Netobidiminished available thempiseside december (192)	sqrt(sqrt(5)+11/4) = 2.232951
Ivietabloiminished gyrated mombicosidodecanedron (J82)	sqrt(sqrt(5)+11/4) = 2.232951
Indiminished mombicosidodecanedron (J83)	sqrt(sqrt(5)+11/4) = 2.232951
3-Prism	sqrt(7/12) = 0.763763
5-Prism	$sqrt(15+2^{sqrt}(5))/20) = 0.986/15$
6-Prism	sqrt(5)/2 = 1.118034

Top or bottom figure	Circumradius
8-Prism	sqrt((5+sqrt(8))/4) = 1.398966
10-Prism	sqrt((7+2*sqrt(5))/4) = 1.693527
N-Prism: N>6, not 8, 10	sqrt(1+csc^2(pi/n))/2
4-Antiprism	sqrt((4+sqrt(2))/8) = 0.822664
5-Antiprism	sqrt((5+sqrt(5))/8) = 0.951057
6-Antiprism	sqrt((3+sqrt(3))/4) = 1.087664
8-Antiprism	sqrt((3-sqrt(2+sqrt(2)))/(8-4*sqrt(2+sqrt(2)))) =
	1.375549
10-Antiprism	sqrt((3*sqrt(2)-sqrt(5+sqrt(5)))/(8*sqrt(2)-
	4*sqrt(5+sqrt(5)))) = 1.674505
N-Antiprism: N>6, not 8, 10	sqrt((3-2*cos(pi/n))/(8-8*cos(pi/n)))

Table 1: list of possible top and bottom facets and their circumradii

Further it follows from the definition that the latterals have to be segmentotopes in turn. So, in order to give a list of all segmentochora one has to look first at the possibilities for segmentogons and segmentohedra. In the convex cases we have (arrow means 'atop'):

Figure 3: low-dimensional convex segmentotopes: x atop y

Maybe some first intuitive examples are in place. The first set of segmentochora clearly is that of 4D prisms. Take any polyhedron from Table 1, errect on its faces ordinary 3D prisms, bend it into the fourth dimension such that the latteral squares will meet, and close that figure with a second copy of the starting polyhedron: "x \parallel x".

A second set of likewise trivial segmentochora is that of 4D pyramids. Take any polyhedron from Table 1 which has a circumradius < 1, put an additional vertex along the fourth

dimension atop it such that all polyhedral vertices are one unit apart: "point $\parallel x$ ". The lateral facets are 3D pyramids ontop of the faces of the bottom polyhedron x.

More interesting segmentochora are constructable from the pyramidal subgroups of symmetry groups [[n,m,2]]. For convexity take (n,m) = (3,3), (3,4) or (3,5) (but table 2 applies to (5/2,3) and (5/2,5) too). Take 2 convex uniform polyhedra of some group [[n,m]], place them symmetrically atop another, and, if their circumradii do not differ too much, the result will be a valid segmentochoron again. - The margin of Table 2 gives the top and bottom polyhedra of the segmentochora in truncation-notation of Coxeter-Schlaefli symbols (numbers behind the 't' are positions of ringed knots in the Coxeter-Dynkin diagram). The body lists the additional, i.e. lateral facets.

	t0{n,m}	t1{n,m}	t2{n,m}	t01{n,m}	t02{n,m}	t12{n,m}	t012{n,m}
		n-ap, m-	n-pyr, tet,	n-cup, m-	n-p, 3p, m-	n-ap, tet,	n-cup, 3p,
t0{n,m}	n-p	pyr	m-pyr	pyr	pyr	2m-pyr	2m-pyr
							n-cup,
			n-pyr, m-		n-ap, 4pyr,		4pyr, m-
t1{n,m}		n-p, m-p	ap	n-cup, m-p	m-ap	n-p, m-cup	cup
				2n-pyr, tet,	n-pyr, 3p,	n-pyr, m-	2n-pyr, 3p,
t2{n,m}			m-p	m-ap	m-p	cup	m-cup
					n-cup, 3p,	n-cup, tet,	2n-p, 3p, m
t01{n,m}				2n-p, m-p	m-ap	m-cup	cup
							n-cup,
					n-p, cube,	n-ap, 3p, m	cube, m-
t02{n,m}					m-p	cup	cup
							n-cup, 3p,
t12{n,m}						n-p, 2m-p	2m-p
							2n-p, cube,
t012{n,m}							2m-p

Table 2: lateral facets of segmentochora with axial symmetry from [[n,m]]

Figure 4: cuboctahedron atop truncated octahedron

Figure 4 shows an projection of the cuboctahedron atop truncated octahedron, which is an example of Table 2 (it visualizes both $t1\{3,4\} \parallel t01\{3,4\}$ and $t02\{3,3\} \parallel t012\{3,3\}$). It was produced from data of Alex Doskey, at LSUHSC of the Lousiana State University. Therin half of the triangular cupolae are removed together with the inner cuboctahedron, in order to get the inner structure visible.

Even more generall one will have to take any 2 figures from Table 1 in any possible relative orientation and has to decide whether there would be a convex segmentochoron lying in between, i.e. whether vertices could be joined by unit edges in such a way, that the lateral facets would be from the list of Figure 3 only. This task for the 4 dimensional set has be done by the author manually within the span of summer 2000 to summer 2001. Although he has no firm proof, the author supposes the list to be complete:

The circumradius (R) of a segmentotope is readilly accessible from the circumradii of its top and bottom facets (r1, r2), the height (H) between them and (if those facets would be lower dimensional) the shear (S1, S2) of their centers parallel to those hyperplanes (taken perpendicular to one another), see Figure 5. It is given by $4*R^{2*}H^{2} = ((r2^{2} + S2^{2}) - (r1^{2} + S1^{2}))^{2} + 2*((r1^{2} + S1^{2}) + (r2^{2} + S2^{2}))*H^{2} + H^{4}$. (The easiest example for a non-vanishing shear is the square pyramid, looked at as a trigonal wedge, i.e. a line atop a trigon: the center of the line is not directly above the center of the trigon.) Clearly, due to the existance of the circum-hypersphere, non-vanishing shears are possible only for subdimensional top or bottom facets.

Figure 5: Getting the circumradius R as function of H, r1, r2, S1, S2

For the extrapolation of names of polyhedra to names of polychora some remarks are usefull. The name "**antiprism**" will be used in analogy to the 3D case whenever top and bottom facet

are vice versas duals. Thence only for selfdual top facets (and therefore bottom facets as well) those 2 facets are congruent, as they are for 3D antiprisms. Names will be given like this: <top-facet >-antiprism or equivalently <bottom-facet>-antiprism. Those are the cases t0{n,m} || t2{n,m} from Table 2.

The observation, that for 3D cupolas the bottom face is up to scaling the kernel of intersection of a dual pair of the top face, leads to a first extension of this name to polychora: If the top facet is a regular polyhedron (t0{n,m}), the bottom facet ought to be the corresponding quasiregular one (i.e. the rectified polyhedron, t1{n,m}). Note that the corresponding faces {n} of those are relatively rotated, they have to be joined by antiprisms, which in turn generalize the squares of 3D cupolas. Here the name "**cupola**" will further be used within 4D for all those segmentotopes, where the lateral facets are pyramids and antiprisms only. Names will be all like this: *<top-facet>-cupola*.

Note that there could be a possible other extrapolation of cupolae as well by generalizing the lateral squares to prisms. This would imply for regular top facets ($t0\{n,m\}$) the bottom facets to be the corresponding rhombi forms (i.e. the runcinated polyhedron, $t02\{n,m\}$). The lateral elements would then be pyramids, prisms, and trigonal prisms (seen as digonal cupolas). – But such a definition does not even apply to all possible regular top facets, for vertices of the icosahedron cannot be joined to those of the rhombicosidodecahedron using only edges of unit length, even by bending into 4D. But this does extrapolate cupolae from being monostratic cups of uniform polyhedra to monostratic cups of uniform polychora (top facets $t0\{n,m\}$ imply the sectioned polychoron to be $t03\{3,m,n\}$.) Using this last observation, in here those few segmentochora are called *<polychoron>-s <top-facet>-cup*.

Names like "**pyramids**" and "**prisms**" extend unambiguously to higher dimensions, meaning polytopes which are 'point atop facet' resp. 'facet atop (the same ungyrated) facet'. Names will be built like this: *<bottom-facet>-pyramid* resp. *<top-facet>-prism*. – Note that only those pyramids are selfdual, where their bottom facet is selfdual in turn.

Finally "**wedges**" are defined as those segmentotopes where the top facet is subdimensional and is moreover a facet of the bottom facet. As in 3D the facets of faces are edges only, it is enough to mention the bottom face (a square-wedge is a trigonal prisms, standing on its square; a trigon-wedge is a square-pyramid, standing on its trigon). In 4D the bottom polyhedron might have different faces, thence the names are set up like [<top facet>-al] <bottom-facet>-al wedge. (Remind that the top facet is subdimensional.)

After these conventions the rest of this article is devoted to the explicit list of convex segmentotopes up to dimension 4. The headers are given each in the form "x \parallel y" which is to be read as "<top facet> atop <bottom facet>". Within each symbol, x and y are in the body of this article chosen to be of ascending dimension, and, if of equal dimension, to be of ascending (facetal) circumradius. The whole list is sorted by ascending (full dimensional) circumradius, i.e polychoral curvature. Within the realm of equal circumradii they are sorted by descending height, and, if equal, the degree of gyration and diminuation is chosen to be ascending. Different views of the same segmentochoron are grouped together, sorted by descending height, and if necessary thereafter by ascending circumradii of the top facets.

Note that we distinguish for polygons, prisms and antiprisms the cases N = (2,) 3, 4, 5, 6, 8, and 10 from the others. This was done because of the possible interference with the other polyhedra of Table 1, respectively its impossibility.

2 Dimensional

2.1 point || line

height: circumradius: other names: comments: sqrt(3/4) = 0.866025sqrt(1/3) = 0.577350regular trigon selfdual, regular

2.2 line || line

height: circumradius: other names: comments: $1 \\ sqrt(1/2) = 0.707107 \\ square \\ selfdual, regular$

3 Dimensional

3.1 point || trigon

height: shear: sqrt(2/3) = 0.8164970

3.1.1 line || perpendicular line

height:sqrt(1/2) = 0.707107shear (top):0shear (bottom):0circumradius:sqrt(3/8) = 0.612372other names:tetrahedron, trigonal pyramid,digonal antiprismcomments:selfdual, regularfaces:4 trigons

3.2 trigon // dual trigon

height: circumradius: other names: comments: faces: sqrt(2/3) = 0.816497 sqrt(1/2) = 0.707107octahedron, trigonal antiprism regular 8 trigons

3.3 line || trigon

height: sqrt(2/3) = 0.816497 *shear:* 1/sqrt(12) = 0.288675

3.3.1 point || square

height:sqrt(1/2) = 0.707107shear:0circumradius:1/sqrt(2) = 0.707107other names:square pyramid, J1, half ofoctahedron, trigonal wedgecomments:selfdualfaces:4 trigons + 1 square

3.4 trigon || trigon

1

height:

3.4.1 line || square

height:sqrt(3/4) = 0.866025shear:0circumradius:sqrt(7/12) = 0.763763other names:trigonal prism, digonal cupola,tetragonal wedgecomments:comments:uniformfaces:2 trigons + 3 squares

3.5 square // dual square

height: circumradius: other names: comments: faces: 1/sqrt(sqrt(2)) = 0.840896 sqrt((4+sqrt(2))/8) = 0.822664 square antiprism uniform 8 trigons + 2 squares

3.6 square || square

height:1circumradius:sqother names:cucomments:refaces:6

sqrt(3/4) = 0.866025 cube, hexahedron, square prism regular 6 squares

3.7 pentagon // dual pentagon

height:	sqrt((5+sqrt(5))/10) = 0.850651
circumradius:	sqrt((5+sqrt(5))/8) = 0.951057
other names:	pentagonal antiprism,
parabidiminished	icosahedron
comments:	uniform
faces:	10 trigons + 2 pentagons

3.8 point || pentagon

height:	sqrt((5-sqrt(5))/10) = 0.525731
shear:	0
circumradius:	sqrt((5+sqrt(5))/8) = 0.951057
other names:	pentagonal pyramid, J2
comments:	selfdual, kind of diminished
cosahedron	
faces:	5 trigons + 1 pentagon

3.9 pentagon // pentagon

height:	1
circumradius:	sqrt((15+2*sqrt(5))/20) =
0.9867151	
other names:	pentagonal prism
comments:	uniform
faces:	5 squares + 2 pentagons

3.10 trigon || hexagon

height:sqrt(2/3) = 0.816497circumradius:1other names:trigonal cupola, J3, half ofcuboctahedron1+3 trigons + 3 squares + 1hexagon1

8

3.11 hexagon || dual hexagon

sqrt(sqrt(3)-1) = 0.855600height: sqrt((3+sqrt(3))/4) = 1.087664circumradius: hexagonal antiprism other names: uniform comments: 12 trigons + 2 hexagons faces:

3.12 hexagon || hexagon

height: circumradius: sqrt(5)/2 = 1.118034other names: hexagonal prism comments: uniform 6 squares + 2 hexagons faces:

3.13 octagon // dual octagon

height:

sqrt((1+sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2)))) = 0.860296circumradius: sqrt((3-sqrt(2+sqrt(2)))/(8-4*sqrt(2+sqrt(2)))) = 1.375549 other names: octagonal antiprism uniform comments: 16 trigons + 2 octagons faces:

3.14 octagon // octagon

height: circumradius: sqrt((5+2*sqrt(2))/4) = 1.398966octagonal prism, bidiminished other names: rhombicuboctahedron comments: uniform 8 squares + 2 octagons faces:

3.15 square || octagon

sqrt(1/2) = 0.707107height: circumradius: sqrt((5+2*sqrt(2))/4) = 1.398966 other names: tetragonal cupola, J4 kind of diminished comments: rhombicuboctahedron faces: 4 trigons + 1 + 4 squares + 1octagon

3.16 decagon || dual decagon

height: sqrt((1+sqrt((5+sqrt(5))/2))/(2+sqrt((5+sqrt (5))/2))) = 0.862397circumradius: sqrt((3-sqrt((5+sqrt(5))/2))/(8-4*sqrt((5+sqrt(5))/2))) = 1.674505other names: decagonal antiprism comments: uniform faces: 20 trigons + 2 decagons

3.17 decagon // decagon

height:	1
circumradius:	sqrt((7+2*sqrt(5))/4) = 1.693527
other names:	decagonal prism
comments:	uniform
faces:	10 squares + 2 decagons

3.18 pentagon || decagon

height:	sqrt((5-sqrt(5))/10) = 0.525731
circumradius:	sqrt(sqrt(5)+11/4) = 2.232951
other names:	pentagonal cupola, J5
comments:	kind of diminished
rhombicosidodec	ahedron
faces:	5 trigons $+$ 5 squares $+$ 1
pentagon + 1 dec	agon

3.19 n-gon || dual n-gon (n ≠ 2, 3, 4, 5, 6, 8, 10)

height:

sqrt(1+2*cos(pi/n))/(2+2*cos(pi/n)))sqrt((3-2*cos(pi/n))/(8circumradius: 8*cos(pi/n))) other names: n-gonal antiprism uniform comments: 2*n trigons + 2 n-gons faces:

3.20 n-gon || n-gon (*n* ≠ *3*, *4*, *5*, *6*, *8*, 10)

height:	1
circumradius:	$sqrt(1+csc^2(pi/n))/2$
other names:	general n-gonal prism
comments:	uniform
faces:	n squares + 2 n-gons

Dimensional 4

4.1 point || tetrahedron

sqrt(5/8) = 0.790569height: shear: 0

line || perpendicular trigon 4.1.1

height:	sart(5/12) = 0.645497
shear (top):	0
shear (bottom):	0
circumradius:	sqrt(2/5) = 0.632456
other names:	pentachoron
comments:	regular, selfdual
cells:	5 tetrahedra

4.2 tetrahedron || dual tetrahedron

haiaht.	1/aart(2) = 0.707107
neigni.	1/sqn(2) = 0.707107
circumradius:	1/sqrt(2) = 0.707107
other names:	hexadecachoron, tetrahedral
antiprism	
comments:	² , regular
cells:	16 tetrahedra

² A similar construction could be considered for any pair of dualy arranged pyramids: n-pyr || inv gyro npyr. Those would lead to valid monostratic polychora for n=2, 3, 4, 5 with cells being 4 n-pyr + 4n tet. But it is only the case of n=3 which comes without shifted bases. Thence only that case is a segmentochoron. - Even so, if at least one of the pyramids would be diminished down to its base

4.3 point // octahedron

height: 1/sqrt(2) = 0.707107 *shear:* 0

4.3.1 trigon || gyrated tetrahedron

height:1/sqrt(2) = 0.707107shear:1/sqrt(24) = 0.204124circumradius:1/sqrt(2) = 0.707107other names:octahedral pyramid, half ofhexadecachoroncomments:comments:homohedralcells:8 tetrahedra + 1 octahedron

4.4 point // square pyramid

height: shear: 1/sqrt(2) = 0.707107

4.4.1 line || tetrahedron

height: 1/sqrt(2) = 0.707107 *shear:* 1/sqrt(8) = 0.353553

4.4.2 trigon || inclined trigon

height:	1/sqrt(2) = 0.707107
shear (top):	1/sqrt(24) = 0.204124
shear (bottom):	1/sqrt(24) = 0.204124

4.4.3 line || perpendicular square

height:1/2shear (top):0shear (bottom):0circumradius:1/sqrt(2) = 0.707107other names:square-pyramidal pyramid,quarter of hexadecachoroncomments:comments:selfdualcells:4 tetrahedra + 2 square pyramids

4.5 tetrahedron || octahedron

height:	sqrt(5/8) = 0.790569
circumradius:	sqrt(3/5) = 0.774597
other names: cupola	rectified pentachoron, tetrahedral
comments: cells:	uniform, homohedral 5 tetrahedra + 5 octahedra

4.6 tetrahedron || square pyramid

height:

sqrt(5/8) = 0.790569

4.6.1 trigon || octahedron

height: sqrt(5/8) = 0.790569 *shear:* 1/sqrt(24) = 0.204124

polygon, the needed relative shift can be applied to that degenerate base (i.e. that polygon) alone. This is why those would re-enter the realm of segmentochora: cases then would be 4.1.1 (n=2), 4.3.1 (n=3), 4.17 (n=4), and 4.80 (n=5).

4.6.2 trigon || gyrated trigonal prism

height:sqrt(5/12) = 0.645497shear:0circumradius:sqrt(3/5) = 0.774597other names:octahedral wedgecomments:kind of diminished rectified-pentachoron (trigon as "tetrahedron - tetrahedron"and octahedron as "octahedron - trigon")cells:3 tetrahedra + 2 octahedra + 3square pyramids + 1 trigonal prism

4.7 line || square pyramid

height:	sqrt(5/8) = 0.790569
shear:	1/sqrt(8) = 0.353553

4.7.1	trigon tetrahedron
height:	sqrt(5/8) = 0.790569
shear:	1/sqrt(6) = 0.408248

4.7.2 point || trigonal prism *height:* sqrt(5/12) = 0.645497 *shear:* 0

4.7.3 trigon || orthogonal square (2 square-edges parallel to 1 trigon-edge)

height: sqrt(5/12) = 0.645497shear (top): 0 shear (bottom): 1/sqrt(12) = 0.288675circumradius: sqrt(3/5) = 0.774597other names: trigonal-prismatic pyramid, tetrahedral wedge comments: kind of diminished rectifiedpentachoron (tetrahedron as "tetrahedron - trigon" and trigon as "octahedron - octahedron") 2 tetrahedra + 3 square pyramids cells: + 1 trigonal prism

4.8 trigon // square pyramid

height:	sqrt(5/8) = 0.790569
shear:	1/sqrt(24) = 0.204124

4.8.1 square || tetrahedron

height:	sqrt(5/8) = 0.790569
shear:	0

4.8.2 line || orthogonal trigonal prism

height:	sqrt(5/12) = 0.645497
shear:	1/sqrt(12) = 0.288675
circumradius:	sqrt(3/5) = 0.774597
other names:	trigonal square-pyramidal wedge
comments:	kind of bidiminished rectified-
pentachoron (tetr	ahedron as "tetrahedron - 2 edges"
and square as "oc	tahedron - 2 square pyramids")
cells:	1 tetrahedron + 4 square pyramids
+ 2 trigonal prism	ns

4.9 tetrahedron // tetrahedron

1

height:

height:

shear:

4.9.1 line || parallel trigonal prism

sqrt(2/3) = 0.8164970

4.9.2 square || orthogonal square

height:1/sqrt(2) = 0.707107shear (top):0shear (bottom):0circumradius:sqrt(5/8) = 0.790569other names:tetrahedral prismcomments:uniformcells:2 tetrahedra + 4 trigonal prisms

4.10 trigon || trigonal prism

height:sqrt(3/4) = 0.866025shear:0circumradius:sqrt(2/3) = 0.816497other names:trigon-trigon-diprism, direct sumof 2 trigons, trigonal trigonal-prismatic wedgecomments:uniform, isochoriccells:6 trigonal prisms

4.11 octahedron // octahedron

1

height:

4.11.1 trigonal prism || gyrated trigonal prism

height:	sqrt(2/3) = 0.816497
circumradius:	sqrt(3/4) = 0.866025
other names:	octahedral prism
comments:	uniform
cells:	2 octahedra + 8 trigonal prisms

4.12 square pyramid || square pyramid

height:

4.12.1 square || trigonal prism

1

height:	sqrt(2/3) = 0.816497
shear:	1/sqrt(12) = 0.288675

4.12.2 line || cube

height:sqrt(1/2) = 0.707107shear:0circumradius:sqrt(3/4) = 0.866025other names:square-pyramidal prism, squaretrigonal-prismatic wedgecomments:diminished octahedral-prism(twice square pyramid as "octahedron - squarepyramid")cells:2 square pyramids + 4 trigonalprisms + 1 cube

4.13 trigonal prism || reflected orthogonal trigonal prism

height:sqrt(2/3) = 0,816497circumradius:sqrt(3/4) = 0.866025other names:-comments:3, kind of gyrated octahedral-prism (as 2 square-pyramidal prisms (see 4.12)gyro-joined at a cube)cells:4 square pyramids + 4+4 trigonalprisms

4.14 square || square antiprism

height:	sqrt(4-sqrt(2))/2 = 0.804019
shear:	(sqrt(2)-1)/sqrt(sqrt(32)) =
0.174155	

4.14.1 square || gyrated cube

height:sqrt(sqrt(8)-1)/2 = 0.676097shear:0circumradius:sqrt((4+sqrt(2))/7) = 0.879465other names:square square-antiprismaticwedgecomments:kind of bidiminished cubic-
antiprism (square as "octahedron -2 square
pyramids" and cube as "cube - 2 squares")cells:4 tetrahedra + 4 square pyramids+ 2 square antiprisms + 1 cube

4.15 octahedron || cube

height:	sqrt(sqrt(8)-1)/2 = 0.676097
circumradius:	sqrt((4+sqrt(2))/7) = 0.879465
other names:	octahedral antiprism, cubic
antiprism	
cells:	8+12 tetrahedra + 1 octahedron +
6 square pyramic	ls + 1 cube

4.16 square pyramid || gyrated cube

height:	sqrt(sqrt(8)-1)/2 = 0.676097
circumradius:	sqrt((4+sqrt(2))/7) = 0.879465
other names:	-
comments:	kind of diminished cubic-
antiprism (square	pyramid as "octahedron - square

³ A similar construction could be considered for any pair of respectively inverted and gyrated arranged cupolae: n-cup || inv gyro n-cup. Those would lead to valid monostratic polychora for n=2, 3, 4, 5 with cells being 4 n-cup + 2n 4 -pyr + 2n 3 -p. But it is only the case of n=2 which comes without shifted bases. Thence only that case is a segmentochoron. -Even so, if at least one of the cupolae would be diminished down to its (larger) base polygon, the needed relative shift can be applied to that degenerate base (i.e. that polygon) alone. This is why those would re-enter the realm of segmentochora: cases then would be 4.12.1 (n=2which provides a further, there not mentioned derivation as diminishing), 4.51 (n=3), 4.105 (n=4), and 4.165 (n=5).

pyramid" and cube as "cube - square") 4+4+4 tetrahedra + 1+1+4 square cells pyramids + 1 square antiprism + 1 cube

4.17 square || gyrated square pyramid

height: sqrt(sqrt(8)-1)/2 = 0.6760971/2shear:

4.17.1 point || square antiprism

height: sqrt((4-sqrt(2))/8) = 0.568527shear: circumradius: sqrt((4+sqrt(2))/7) = 0.879465square-antiprismatic pyramid other names: kind of diminished cubiccomments: antiprism (square as "cube - cube" and square pyramid as "octahedron - square pyramid") 8 tetrahedra + 2 square pyramids cells: + 1 square antiprism

4.18 trigonal prism || trigonal prism

height:

4.18.1 square || cube

1

height: sqrt(3/4) = 0.866025shear: 0 circumradius: sqrt(5/6) = 0.912871trigon-square-diprism, direct sum other names: of trigon and square, trigonal-prismatic prism, cubic wedge comments: uniform cells: 4 trigonal prisms + 3 cubes

4.19 square antiprism || square antiprism

height:

4.19.1 cube || gyrated cube

1

height: sqrt(sqrt(1/2)) = 0.840896sqrt((6+sqrt(2))/8) = 0.962692circumradius: other names: square-antiprismatic prism comments: uniform cells 8 trigonal prisms + 2 square antiprisms + 2 cubes

4.20 cube || cube

height: 1 circumradius: 1 other names: tesseract, hypercube, octachoron, square-square-diprism, cubic prism comments: regular cells: 8 cubes

4.21 cube || icosahedron

height: circumradius: other names:

(1+sqrt(5))/4 = 0.8090171

cells: 8 tetrahedra + 12 square pyramids + 6 trigonal prisms + 1 cube + 1 icosahedron

4.22 pentagon || pentagonal antiprism

height:	(1+sqrt(5))/4 = 0.809017
shear:	sqrt((5-2*sqrt(5))/20) = 0.162460

4.22.1 pentagon || gyrated pentagonal prism

sqrt((5+2*sqrt(5))/20) = 0.688191height: shear: 0 circumradius: 1 pentagonal pentagonalother names: antiprismatic wedge cells: 5 tetrahedra + 5 square pyramids + 2 pentagonal antiprisms + 1 pentagonal prism

4.23 tetrahedron || cuboctahedron

sqrt(5/8) = 0.790569height: circumradius: other names: half of runcinated pentachoron, half of small prismatodecachoron cells: 1+4 tetrahedra + 4+6 trigonal prisms + 1 cuboctahedron

4.24 tetrahedron || trigonal cupola

sqrt(5/8) = 0.790569height: circumradius: 1 comments: kind of diminished half-ofruncinated-pentachoron (tetrahedron as "tetrahedron - trigon" and trigonal cupola as "cuboctahedron - trigonal cupola") cells: 2 tetrahedra + 6 trigonal prisms + 2 trigonal cupolae

4.25 trigon || trigonal cupola

height: sqrt(5/8) = 0.7905691/sqrt(24) = 0.204124shear:

4.25.1 hexagon || trigonal prism

height: sqrt(5/12) = 0.645497shear: 0 circumradius: 1 trigonal trigonal-cupolaic wedge other names: kind of diminished half-ofcomments: runcinated-pentachoron (trigon as "tetrahedron tetrahedron" and trigonal cupola as "cuboctahedron - trigonal cupola") 3 tetrahedra + 1+3 trigonal prism cells: + 2 trigonal cupolae

4.26 square || square pyramid

height:	1/sqrt(2) = 0.707107
shear:	1/sqrt(2) = 0.707107

4.26.1 point || cube

height:	1/2
shear:	0
circumradius:	1
other names:	cubic pyramid, tetragonal square-
pyramidal wedg	e
comments:	kind of diminished octahedral-
cupola (square a	s "cuboctahedron - cuboctahedron'
and square pyrai	mid as "octahedron - square
pyramid")	

cells: 6 square pyramids + 1 cube

4.27 trigon || gyrated trigonal cupola

height: 1/sqrt(2) = 0.707107 *shear:* 1/sqrt(6) = 0.408248

4.27.1 hexagon || octahedron

height:1/sqrt(2) = 0.707107shear:0circumradius:1other names:-comments:kind of (bi-)diminish

comments: kind of (bi-)diminished octahedral-cupola (trigon as "octahedron octahedron" and trigonal cupola as "cuboctahedron - trigonal cupola" -resp.- octahedron as "octahedron - 2 trigons" and hexagon as "cuboctahedron - 2 trigonal cupolae")

cells: 1 octahedron + 6 square pyramids + 2 trigonal cupolae

4.28 square || cuboctahedron

height:1/sqrt(2) = 0.707107shear:0circumradius:1other names:tetragonal cuboctahedral wedgecomments:kind of bidiminished octahedral-cupola (cuboctahedron as "cuboctahedron - 2squares" and square as "octahedron - 2 squarepyramids")cells:4+8 square pyramids + 2 cubes +

cells: 4+8 square pyramids + 2 cubes + 1 cuboctahedron

4.29 octahedron || cuboctahedron

height:1/sqrt(2) = 0.707107circumradius:1other names:octahedral cupola, icositetrachoraloctahedron-cup, half of icositetrachoroncells:1+8 octahedra + 6 squarepyramids + 1 cuboctahedron

4.30 octahedron || trigonal cupola

height:1/sqrt(2) = 0.707107circumradius:1other names:-comments:kind of diminished octahedralcupola (octahedron as "octahedron - trigon" andtrigonal cupola as "cuboctahedron - trigonal

cupola") *cells:* 2+3 octahedra + 6 square pyramids + 2 trigonal cupolae

4.31 square pyramid || cuboctahedron

height:1/sqrt(2) = 0.707107circumradius:1other names:-comments:kind of diminished octahedralcupola (square pyramid as "octahedron - squarepyramid" and cuboctahedron as "cuboctahedron - square")cells:4 octahedra + 1+1+4+4 squarepyramids + 1 cube + 1 cuboctahedron

4.32 square pyramid || trigonal cupola

height:1/sqrt(2) = 0.707107circumradius:1other names:-comments:kind of bidiminished octahedralcupola (square pyramid as "octahedron - squarepyramid - trigon" and trigonal cupola as"cuboctahedron - trigon - trigonal cupola")cells:1 octahedron + 2+2+4 squarepyramids + 1 cube + 2 trigonal cupolae

4.33 trigon || tridiminished icosahedron

height:1/2shear:(3-sqrt(5))/(4*sqrt(3)) = 0.110264circumradius:1other names:trigonal tridiminished-icosahedralwedgecells:3 tetrahedra + 1 octahedron + 3square pyramids + 1 trigonal prism + 3 pentagonalpyramids + 1 tridiminished icosahedron

4.34 pentagon || pentagonal prism

4.35 cube // cuboctahedron

height:sqrt(sqrt(2)-3/4) = 0.814993circumradius:sqrt((16+6*sqrt(2))/23) =1.031784cubic cupolaother names:cubic cupolacells:8 tetrahedra + 6 square antiprisms+ 1 cube + 1 cuboctahedron

4.36 icosahedron || icosahedron

height:1circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:icosahedral prismcomments:uniformcells:20 trigonal prisms + 2 icosahedra

4.37 gyroelongated pentagonal pyramid || gyroelongated pentagonal pyramid

height:1circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:gyroelongated-pentagonal-pyramidal prismcomments:kind of diminished icosahedral-prism (twice: gyroelongated pentagonal pyramid(J11) as "icosahedron - pentagonal pyramid")cells:5+5+5 trigonal prisms + 1pentagonal prism + 2 gyroelongated pentagonalpyramid

4.38 pentagonal pyramid || pentagonal pyramid

1

height:

4.38.1 line || pentagonal prism

height:sqrt((5-sqrt(5))/10) = 0.525731circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:pentagonal-pyramidal prismcomments:kind of diminished icosahedral-prism (twice: pentagonal pyramid as "icosahedron -gyroelongated pentagonal pyramid (J11)")cells:5 trigonal prisms + 2 pentagonalpyramids + 1 pentagonal prism

4.39 pentagonal antiprism || pentagonal antiprism

1

height:

4.39.1 pentagonal prism || gyrated pentagonal prism

height:sqrt((5+sqrt(5))/10) = 0.850651circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:pentagonal-antiprismatic prismcomments:uniform, kind of parabidiminishedicosahedral-prism (twice: pentagonal antiprism as"icosahedron - 2 pentagonal pyramids")cells:10 trigonal prisms + 2 pentagonalantiprisms + 2 pentagonal prisms

4.40 metabidiminished icosahedron // metabidiminished icosahedron

height:1circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:metabidiminished-icosahedralprismprism

comments:kind of bidiminished icosahedral-prism (twice: metabidiminished icosahedron (J62)as "icosahedron - 2 pentagonal pyramids")cells:2+2+2+4 trigonal prisms + 2pentagonal prisms + 2 metabidiminished icosahedra

4.41 tridiminished icosahedron || tridiminished icosahedron

height:1circumradius:sqrt((7+sqrt(5))/8) = 1.074481other names:tridiminished-icosahedral prismcomments:kind of tridiminished icosahedral-prism (twice: tridiminished icosahedron (J63) as"icosahedron - 3 pentagonal pyramids")cells:1+1+3 trigonal prisms + 3pentagonal prisms + 2 tridiminished icosahedra

4.42 pentagonal prism || pentagonal prism

height:1circumradius:sqrt((10+sqrt(5))/10) = 1.106168other names:pentagonal-prismatic prism,square-pentagon-diprism, direct sum of square andpentagoncomments:uniformcells:5 cubes + 4 pentagonal prisms

4.43 cuboctahedron || cuboctahedron

height:1circumradius:sqrt(5)/2 = 1.118034other names:cuboctahedral prismcomments:uniformcells:8 trigonal prisms + 6 cubes + 2cuboctahedra

4.44 trigonal orthobicupola || trigonal orthobicupola

height:1circumradius:sqrt(5)/2 = 1.118034other names:trigonal-orthobicupolaic prismcomments:kind of gyrated cuboctahedral-prism (as 2 trigonal-cupolaic prisms (see 4.45)joined at the hexagonal prism)cells:2+6 trigonal prisms + 6 cubes + 2trigonal orthobicupolae

4.45 trigonal cupola || trigonal cupola

1

height:

4.45.1 trigonal prism || hexagonal prism

height:sqrt(2/3) = 0.816497circumradius:sqrt(5)/2 = 1.118034other names:trigonal-cupolaic prism, half ofcuboctahedral prism

cells: 1+3 trigonal prisms + 3 cubes + 2 trigonal cupolae + 1 hexagonal prism

4.46 hexagon || hexagonal antiprism

height:	sqrt((7-sqrt(3))/8) = 0.811476
shear:	sqrt((sqrt(27)-5)/8) = 0.156586

4.46.1 hexagon || gyrated hexagonal prism

height: sqrt(sqrt(3)-5/4) = 0.694299shear: circumradius: sqrt((19+6*sqrt(3))/23) =1.130454 hexagonal hexagonalother names: antiprismatic wedge 6 tetrahedra + 6 square pyramids cells: + 2 hexagonal antiprisms + 1 hexagonal prism

4.47 hexagon || hexagonal prism

sqrt(3/4) = 0.866025height: shear: circumradius: sqrt(4/3) = 1.154701trigon-hexagon-diprism, direct other names: sum of trigon and hexagon, hexagonal hexagonalprismatic wedge comments: uniform cells: 6 trigonal prisms + 3 hexagonal prisms

4.48 cuboctahedron || truncated tetrahedron

height: sart(5/8) = 0.790569circumradius: sqrt(7/5) = 1.183216cuboctahedral monostratic cup of other names: cantellated pentachoron, cuboctahedral monostratic cup of small rhombated pentachoron kind of diminished cantellated comments:

pentachoron (as "cantellated pentachoron octahedral monostratic cup of cantellated pentachoron (see 4.52)")

4 octahedra + 6 trigonal prisms + cells: 1 cuboctahedron + 4 trigonal cupolae + 1 truncated tetrahedron

4.49 trigonal orthobicupola || truncated tetrahedron

height: circumradius: other names:

tetrahedron

sart(5/8) = 0.790569sqrt(7/5) = 1.183216

kind of gyrated cuboctahedralcomments: monostratic-cup-of-cantellated-pentachoron (trigonal orthobicupola (J27) as "2 trigonal cupolae" and truncated tetrahedron as "(truncated tetrahedron - hexahedron) + hexahedron" (see 4.50, 4.51) joined at the hexagonal prism) 1 octahedron + 3+3 square cells: pyramids + 3+3 trigonal prisms + 1 trigonal orthobicupola + 1+3 trigonal cupolae + 1 truncated

4.50 trigonal cupola || truncated tetrahedron

height: circumradius:

sqrt(5/8) = 0.790569sqrt(7/5) = 1.183216

other names: comments: kind of diminished cuboctahedralmonostratic-cup-of-cantellated-pentachoron (trigonal cupola as "cuboctahedron - trigonal cupola" and truncated tetrahedron as "truncated tetrahedron - hexagon")

cells: 1 octahedron + 3 square pyramids + 3 trigonal prisms + 1+3 trigonal cupolae + 1 hexagonal prism + 1 truncated tetrahedron

4.51 hexagon || trigonal cupola

height:	sqrt(5/8) = 0.790569
shear:	sqrt(3/8) = 0.612372

4.51.1 trigon || hexagonal prism

sqrt(5/12) = 0.645497height: shear: 0 circumradius: other names: wedge

sqrt(7/5) = 1.183216hexagonal trigonal-cupolaic

kind of diminished cuboctahedralcomments: monostratic-cup-of-cantellated-pentachoron (trigonal cupola as "cuboctahedron - trigonal cupola" and hexagon as "truncated tetrahedron truncated tetrahedron")

cells: 3 square pyramids + 3 trigonal prisms + 2 trigonal cupolae + 1 hexagonal prism

4.52 octahedron || truncated tetrahedron

sqrt(5/8) = 0.790569height: circumradius: sqrt(7/5) = 1.183216other names: octahedral monostratic cup of cantellated pentachoron, octahedral monostratic cup of small rhombated pentachoron kind of diminished cantellatedcomments: pentachoron (as "cantellated pentachoron cuboctahedral monostratic cup of cantellated pentachoron (see 4.48)") cells: 1 octahedron + 4 trigonal prisms

+ 4 trigonal cupolae + 1 truncated tetrahedron

4.53 hexagonal antiprism || hexagonal antiprism

1

height:

4.53.1 hexagonal prism || gyrated hexagonal prism

height:	sqrt(sqrt(3)-1) = 0.855600
circumradius:	sqrt((4+sqrt(3))/4) = 1.197085
other names:	hexagonal-antiprismatic prism
comments:	uniform
cells:	12 trigonal prisms + 2 hexagonal
antiprisms $+ 2$ h	exagonal prisms

4.54 hexagonal prism || hexagonal prism

height:1circumradius:sqrt(3/2) = 1.224745other names:hexagonal-prismatic prism,square-hexagon-diprism, direct sum of square andhexagoncomments:uniformcells:6 cubes + 4 hexagonal prisms

4.55 truncated tetrahedron || inverse truncated tetrahedron

height:sqrt(1/2) = 0.707107circumradius:sqrt(3/2) = 1.224745other names:equatorial tetrahedral segment ofrectified tesseractcomments:comments:weakly uniformcells:6 tetrahedra + 8 trigonal cupola +2 truncated tetrahedra

4.56 tetrahedron || truncated tetrahedron

height:sqrt(1/2) = 0.707107circumradius:sqrt(3/2) = 1.224745other names:tetrahedral monostratic cup ofrectified tesseracttetrahedra + 4 trigonalcupolae + 1 truncated tetrahedron

4.57 truncated tetrahedron || truncated tetrahedron

height:1circumradius:sqrt(13/8) = 1.274755other names:truncated-tetrahedral prismcomments:uniformcells:4 trigonal prisms + 4 hexagonalprisms + 2 truncated tetrahedra

4.58 octagon // octagonal antiprism

height:

```
sqrt((2+3*sqrt(2+sqrt(2)))/(4+4*sqrt(2+sqrt(2)))) = 0.813764
```

shear:

1/sqrt(16+4*sqrt(2)+12*sqrt(2+sqrt(2))) = 0.151048

4.58.1 octagon || gyrated octagonal prism

height:

sqrt((2+3*sqrt(2+sqrt(2)))/(8+4*sqrt(2+sqrt(2)))) = 0.700077shear: 0
circumradius: sqrt((2*sqrt(2+sqrt(2))-sqrt(2))/(4*sqrt(2+sqrt(2))-3*sqrt(2)-2)) = 1.409438
other names: octagonal octagonal-antiprismatic
wedge
cells: 8 tetrahedra + 8 square pyramids
+ 2 octagonal antiprisms + 1 octagonal prism

4.59 octagon // octagonal prism

height:sqrt(3/4) = 0.866025shear:0circumradius:sqrt((8+3*sqrt(2))/6) = 1.428440other names:trigon-octagon-diprism, directsum of trigon and octagon, octagonal octagonal-
prismatic wedgecomments:comments:uniformcells:8 trigonal prisms + 3 octagonal

4.60 snub cube || snub cube

height:1circumradius: $sqrt((7-8*cos^2(x)))/(12-16*cos^2(x))) = 1.433724$ other names:snub-cubic prismcomments:uniform, x is half of thecentriangle underneeth an edge of length 1 in thevertex figure of the snub cube: <math>cos(x) =(cbrt(1+sqrt(11/27))+cbrt(1-sqrt(11/27))/cbrt(sqrt(128)) = 0.842509cells:8+24 trigonal prisms + 6 cubes +2 snub cubes

4.61 cuboctahedron || rhombicuboctahedron

height:sqrt((sqrt(8)-1)/4) = 0.676097circumradius:(1+sqrt(8))/sqrt(7) = 1.447009other names:cuboctahedral cupolacells:8 octahedra + 12 square pyramids+ 6 square antiprisms + 1 cuboctahedron + 1rhombicuboctahedron

4.62 cuboctahedron || elongated square cupola

height:sqrt((sqrt(8)-1)/4) = 0.676097circumradius:(1+sqrt(8))/sqrt(7) = 1.447009other names:-comments:kind of diminished cuboctahedral-cupola (cuboctahedron as "cuboctahedron - square"and elongated square cupola (J19) as"rhombicuboctahedron - square cupola")cells:4 octahedra + 4+4+4 squarepyramids + 1+4 square antiprisms + 1cuboctahedron + 1 elongated square cupola + 1square cupola

4.63 cuboctahedron || octagonal prism

height:sqrt((sqrt(8)-1)/4) = 0.676097circumradius:(1+sqrt(8))/sqrt(7) = 1.447009other names:-comments:kind of bidiminishedcuboctahedral-cupola (cuboctahedron as"cuboctahedron - 2 squares" and octagonal prism as"rhombicuboctahedron - 2 square cupolae")cells:4+8 square pyramids + 4 squareantiprisms + 1 cuboctahedron + 2 square cupolae +1 octagonal prism

4.64 square || gyrated square cupola

height: sqrt((sqrt(8)-1)/4) = 0.676097 *shear:* 1/sqrt(2) = 0.707107

4.64.1 octagon || square antiprism

height:sqrt((4-sqrt(2))/8) = 0.568527shear:0circumradius:(1+sqrt(8))/sqrt(7) = 1.447009other names:-comments:kind of diminished cuboctahedral-cupola (square as "cuboctahedron - cuboctahedron"and square cupola as "rhombicuboctahedron -elongated square cupola")

cells: 8 square pyramids + 1 square antiprism + 2 square cupolae

4.65 octagonal antiprism || octagonal antiprism

1

height:

4.65.1 octagonal prism || gyrated octagonal prism

height:

sqrt((1+sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2)))) = 0.860296 circumradius: sqrt((5-2*sqrt(2+sqrt(2)))/(8-4*sqrt(2+sqrt(2)))) = 1.463603 other names: octagonal-antiprismatic prism comments: uniform cells: 16 trigonal prisms + 2 octagonal antiprisms + 2 octagonal prisms

4.66 rhombicuboctahedron || rhombicuboctahedron

height: circumradius: sqrt((3+sqrt(2))/2) = 1.485634other names: rhombicuboctahedral prism, equatorial monostratic segment of runcinated tesseract, equatorial monostratic segment of runcinated octachoron, equatorial monostratic segment of runcinated hexadecachoron, equatorial monostratic segment of small diprismatotesseractihexadecachoron uniform, kind of parabidiminished comments: runcinated-tesseract (as "runcinated tesseract - 2 cubic monostratic cups of runcinated tesseract (see 4.71)") cells: 8 trigonal prisms + 6+12 cubes +

cells: 8 trigonal prisms + 6+12 cubes + 2 rhombicuboctahedra

4.67 elongated square gyrobicupola // elongated square gyrobicupola

height:1circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:elongated-square-gyrobicupolaic

prism

comments:kind of gyratedrhombicuboctahedral-prism (twice: elongatedsquare gyrobicupola (J37) as "elongated squarecupola (J19) + square cupola" (see 4.68, 4.69)joined at the octagonal prism)cells:8 trigonal prisms + 2+8+8 cubes+ 2 elongated square gyrobicupolae

4.68 elongated square cupola || elongated square cupola

height:1circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:elongated-square-cupolaic prismcomments:kind of diminishedrhombicuboctahedral-prism (twice: elongatedsquare cupola (J19) as "rhombicuboctahedron -square cupola")cells:4 trigonal prisms + 1+4+4+4cubes + 2 elongated square cupolae + 1 octagonalprism

4.69 square cupola // square cupola height: 1

4.69.1 cube || octagonal prism

height:1/sqrt(2) = 0.707107circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:square-cupolaic prismcomments:kind of bidiminished cubic-monostratic-cup-of-small-dimismetatassaraatibaaadaaaabaraa (auba as "au")

diprismatotesseractihexadecachoron (cube as "cube - 2 squares" and octagonal prism as

"rhombicuboctahedron - 2 square cupolae") -resp.kind of diminished rhombicuboctahedral-prism (twice: square cupola as "rhombicuboctahedron elongated square cupola (J19)")

cells: 4 trigonal prisms + 1+4 cubes + 2 square cupolae + 1 octagonal prism

4.70 octagonal prism || octagonal prism

height:1circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:octagonal-prismatic prismcomments:uniform, kind of parabidiminishedrhombicuboctahedral-prism (twice: octagonal prismas "rhombicuboctahedron - 2 square cupolae")cells:8 cubes + 4 octagonal prisms

4.71 cube || rhombicuboctahedron

height:1/sqrt(2) = 0.707107circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:cubic monostratic cup ofruncinated tesseract, cubic monostratic cup ofruncinated octachoron, cubic monostratic cup ofruncinated hexadecachoron, cubic monostratic cup ofsmall diprismatotesseractihexadecachoron

cells: 8 tetrahedra + 12 trigonal prisms + 1+6 cubes + 1 rhombicuboctahedron

4.72 cube || elongated square cupola

height:1/sqrt(2) = 0.707107circumradius:sqrt((3+sqrt(2))/2) = 1.485634other names:-comments:kind of diminished cubic-monostratic-cup-of-runcinated-tesseract (cube as"cube - square" and elongated square cupola (J19)as "rhombicuboctahedron - square cupola")cells:4 tetrahedra + 4+4 trigonal prisms+ 1+1+4 cubes + 1 elongated square cupola + 1square cupola

4.73 square || square cupola

height: 1/sqrt(2) = 0.707107 *shear:* 1/2

4.73.1 octagon || cube

height: 1/2shear: 0 sqrt((3+sqrt(2))/2) = 1.485634circumradius: tetragonal square-cupolaic wedge other names: kind of diminished cubiccomments: monostratic-cup-of-smalldiprismatotesseractihexadecachoron (square as "cube - cube" and square cupola as "rhombicuboctahedron - elongated square cupola") cells: 4 tetrahedra + 2 square cupolae + 4 trigonal prisms + 1 cube

4.74 dodecahedron || dodecahedron

height:1circumradius:sqrt((11+3*sqrt(5))/8) = 1.487792other names:dodecahedral prismcomments:uniformcells:12 pentagonal prisms + 2dodecahedra

4.75 rhombicuboctahedron || truncated octahedron

height:sqrt(sqrt(2)-3/4) = 0.814993circumradius:sqrt((35+16*sqrt(2))/23) =1.582890other names:other names:-cells:12 trigonal prisms + 6 squareantiprisms + 8 trigonal cupolae + 1rhombicuboctahedron + 1 truncated octahedron

4.76 truncated tetrahedron || truncated octahedron

height:sqrt(5/8) = 0.790569circumradius:sqrt(13/5) = 1.612452other names:truncated-tetrahedral monostraticcup of runcinated pentachoron, truncated-tetrahedral monostratic cup of prismatorhombated

pentachoron

cells: 6 trigonal prisms + 4 trigonal cupolae + 4 hexagonal prisms + 1 truncated tetrahedron + 1 truncated octahedron

4.77 dodecahedron || icosidodecahedron

height:(1+sqrt(5))/4 = 0.809017circumradius:(1+sqrt(5))/2 = 1.618034other names:dodecahedral cupolacells:20 tetrahedra + 12 pentagonalantiprisms + 1 dodecahedron + 1icosidodecahedron

4.78 icosahedron || dodecahedron

height:1/2circumradius:(1+sqrt(5))/2 = 1.618034other names:icosahedral antiprism,dodecahedral antiprism20+30 tetrahedra + 1 icosahedron+ 12 pentagonal pyramids + 1 dodecahedron

4.79 gyroelongated pentagonal pyramid || dodecahedron

height:1/2circumradius: $(1+\operatorname{sqrt}(5))/2 = 1.618034$ other names:-comments:kind of diminished dodecahedral-antiprism (gyroelongated pentagonal pyramid (J11)as "icosahedron - pentagonal pyramid" anddodecahedron as "dodecahedron - pentagon")cells:5+5+5+5+5+10 tetrahedra + 1gyroelongated pentagonal pyramid + 1+5+5pentagonal pyramids + 1 pentagonal antiprism + 1dodecahedron

4.80 pentagon || gyrated pentagonal pyramid

height:	1/2
shear:	sqrt((25+11*sqrt(5))/40) =
1.113516	

4.80.1 point || pentagonal antiprism

height:	(sqrt(5)-1)/4 = 0.309017
shear:	0
circumradius:	(1+sqrt(5))/2 = 1.618034
other names:	pentagonal-antiprismatic pyramid
comments:	parabidiminished icosahedral
pyramid, kind of	diminished dodecahedral-
antiprism (pentag	onal pyramid as "icosahedron -
gyroelongated pe	ntagonal pyramid (J11)" and
pentagon as "dod	ecahedron - dodecahedron")
cells:	10 tetrahedra + 2 pentagonal
pyramids + 1 pen	tagonal antiprism

4.81 pentagonal antiprism || dodecahedron

height:1/2circumradius:(1+sqrt(5))/2 = 1.618034other names:-comments:pentagonal-antiprismalmonostratic cup of great antiprism, kind ofbidiminished dodecahedral-antiprism (pentagonalantiprism as "icosahedron - 2 pentagonal pyramids"and dodecahedron " as dodecahedron - 2pentagons")cells:10+10+10 tetrahedra + 10

pentagonal pyramids + 1+2 pentagonal antiprisms + 1 dodecahedron

4.82 metabidiminished icosahedron // dodecahedron

height:1/2circumradius:(1+sqrt(5))/2 = 1.618034other names:-comments:kind of bidiminisheddodecahedral-antiprism (metabidiminishedicosahedron (J62) as "icosahedron - 2 pentagonalpyramids" and dodecahedron " as dodecahedron - 2pentagons")cells:1+1+2+2+2+4+4+4+4+4

tetrahedra + 2+2+2+4 pentagonal pyramids + 2 pentagonal antiprisms + 1 metabidiminished icosahedron + 1 dodecahedron

4.83 tridiminished icosahedron || dodecahedron

height:1/2circumradius: $(1+\operatorname{sqrt}(5))/2 = 1.618034$ other names:-comments:kind of tridiminisheddodecahedral-antiprism (tridiminished icosahedron(J63) as "icosahedron - 3 pentagonal pyramids" anddodecahedron " as dodecahedron - 3 pentagons")cells:1+1+3+3+3+6 tetrahedra +3+3+3 pentagonal pyramids + 3 pentagonalantiprisms + 1 tridiminished icosahedron + 1dodecahedron

4.84 point || icosahedron

height:	(sqrt(5)-1)/4 = 0.309017
shear:	0
circumradius:	(1+sqrt(5))/2 = 1.618034
other names:	icosahedral pyramid
comments:	homohedral
cells:	20 tetrahedra + 1 icosahedron

4.85 point || gyroelongated pentagonal pyramid

height:(sqrt(5)-1)/4 = 0.309017shear:0circumradius:(1+sqrt(5))/2 = 1.618034other names:gyroelongated-pentagonal-

pyramidal pyramid

comments: kind of diminished icosahedralpyramid (point as "point - point" and gyroelongated pentagonal pyramid (J11) as "icosahedron pentagonal pyramid") *cells:* 5+5+5 tetrahedra + 1 gyroelongated pentagonal pyramid + 1 pentagonal pyramid

4.86 point || pentagonal pyramid

height:	(sqrt(5)-1)/4 = 0.309017
shear:	0

4.86.1 line || perpendicular pentagon

sqrt((5-2*sqrt(5))/20) = 0.162460height: shear (top): 0 shear (bottom): 0 (1+sqrt(5))/2 = 1.618034circumradius: pentagonal-pyramidal pyramid other names: comments: selfdual, kind of diminished icosahedral-pyramid (point as "point - point" and pentagonal pyramid as "icosahedron gyroelongated pentagonal pyramid (J11)") 5 tetrahedra + 2 pentagonal cells: pyramids

4.87 point || metabidiminished icosahedron

(sqrt(5)-1)/4 = 0.309017height: shear: circumradius: (1+sqrt(5))/2 = 1.618034metabidiminished-icosahedral other names: pyramid comments: kind of bidiminished icosahedralpyramid (point as "point - 2 points" and metabidiminished icosahedron (J62) as "icosahedron - 2 pentagonal pyramids") 2+2+2+4 tetrahedra + 2 cells: pentagonal pyramids + 1 metabidiminished icosahedron

4.88 point || tridiminished icosahedron

height:	(sqrt(5)-1)/4 = 0.309017
shear:	0
circumradius:	(1+sqrt(5))/2 = 1.618034
other names:	tridiminished-icosahedral
pyramid	
comments:	kind of tridiminished icos
pyramid (point a	as "point - 3 points" and
metabidiminishe	ed icosahedron (I63) as

comments:kind of tridiminished icosahedral-pyramid (point as "point - 3 points" andmetabidiminished icosahedron (J63) as"icosahedron - 3 pentagonal pyramids")cells:1+1+3 tetrahedra + 3 pentagonalpyramids + tridiminished icosahedron

4.89 truncated octahedron || truncated octahedron

height: 1 *circumradius:* sqrt(11/4) = 1.658312

19

other names:truncated-octahedral prismcomments:uniformcells:6 cubes + 8 hexahedral prisms + 2truncated octahedra

4.90 icosidodecahedron || icosidodecahedron

height:1circumradius:sqrt(7+2*sqrt(5))/2 = 1.693527other names:icosidodecahedral prismcomments:uniformcells:20 trigonal prisms + 12pentagonal prisms + 2 icosidodecahedra

4.91 orthobirotunda || orthobirotunda

1

height:

circumradius:sqrt(7+2*sqrt(5))/2 = 1.693527other names:orthobirotundaic prismcomments:kind of gyratedicosidodecahedral-prism (twice: orthobirotunda as
"rotunda + rotunda" (see 4.92) joined at the
decagonal prism)cells:10+10 trigonal prisms + 2+10pentagonal prisms + 2 orthobirotundae

4.92 rotunda || rotunda

height:1circumradius:sqrt(7+2*sqrt(5))/2 = 1.693527other names:rotundaic prism, half oficosidodecahedral prisms+5 trigonal prisms + 1+5pentagonal prisms + 2 rotundae + 1 decagonalprism

4.93 decagon || decagonal antiprism

height:

sqrt((sqrt(8)+3*sqrt(5+sqrt(5)))/(2*sqrt(8) +4*sqrt(5+sqrt(5)))) = 0.814774 *shear:*

1/sqrt(18+2*sqrt(5)+3*sqrt(8)*sqrt(5+sqrt(5))) = 0.148581

4.93.1 decagon || gyrated decagonal prism

height:

sqrt((sqrt(8)+3*sqrt(5+sqrt(5)))/(4*sqrt(8) + 4*sqrt(5+sqrt(5)))) = 0.702658shear: 0
circumradius: sqrt((sqrt(8)*sqrt(5+sqrt(5))-1-sqrt(5))/(2*sqrt(8)*sqrt(5+sqrt(5))-7-3*sqrt(5))) = 1.702385
other names: decagonal decagonal-antiprismatic wedge
cells: 10 tetrahedra + 10 square
pyramids + 2 decagonal antiprisms + 1 decagonal
prism

4.94 decagon || decagonal prism

height:sqrt(3/4) = 0.866025shear:0circumradius:sqrt((11+3*sqrt(5))/6) = 1.717954other names:trigon-decagon-diprism, directsum of trigon and decagon, decagonal decagonal-
prismatic wedgeuniformcomments:uniformcells:10 trigonal prisms + 3 decagonal

4.95 cuboctahedron || truncated octahedron

height:1/sqrt(2) = 0.707107circumradius:sqrt(3) = 1.732051other names:cuboctahedral monostratic cup ofrectified icositetrachoron6 cube + 1 cuboctahedron + 8trigonal cupolae + 1 truncated octahedron

4.96 decagonal antiprism || decagonal antiprism

height:

4.96.1 decagonal prism || gyrated decagonal prism

height:

sqrt((sqrt(2)+sqrt(5+sqrt(5)))/(2*sqrt(2)+sqrt(5+sqrt(5)))) = 0.862397circumradius: sqrt((5*sqrt(2)-2*sqrt(5+sqrt(5)))/(8*sqrt(2)-4*sqrt(5+sqrt(5)))) = 1.747560 other names: decagonal-antiprismatic prism comments: uniform cells: 20 trigonal prisms + 2 decagonal antiprisms + 2 decagonal prisms

4.97 decagonal prism || decagonal prism

height:1circumradius:sqrt((4+sqrt(5))/4) = 1.765796other names:decagonal-prismatic prism,square-decagon-diprism, direct sum of square anddecagoncomments:uniformcells:10 cubes + 4 decagonal prisms

4.98 truncated octahedron || truncated cube

height:sqrt((sqrt(8)-1)/4) = 0.676097circumradius:sqrt((11+8*sqrt(2))/7) = 1.785406other names:-cells:12 tetrahedra + 8 trigonal cupolae+ 6 square cupolae + 1 truncated octahedron + 1truncated cube

4.99 truncated cube || truncated cube

height:1circumradius:sqrt(2+sqrt(2)) = 1.847759other names:truncated-cubic prism, equatorialrhombicuboctahedral segment of small rhombatedtesseract, equatorial rhombicuboctahedral segmentof cantellated tesseractcomments:uniform

cells: 8 trigonal prisms + 6 octagonal prisms + 2 truncated cubes

4.100 rhombicuboctahedron || truncated cube

height:1/sqrt(2) = 0.707107circumradius:sqrt(2+sqrt(2)) = 1.847759other names:rhombicuboctahedral monostraticcup of cantellated octachoron, rhombicuboctahedralmonostratic cup of cantellated tesseract,rhombicuboctahedral monostratic cup of smallrhombicuboctahedral monostratic cup of smallrhombated tesseractcollorsouthedra = 12 trigonal prisms =

cells: 8 octahedra + 12 trigonal prisms + 1 rhombicuboctahedron + 6 square cupolae + 1 truncated cube

4.101 elongated square gyrobicupola || truncated cube

height: 1, circumradius: so other names: -

1/sqrt(2) = 0.707107 sqrt(2+sqrt(2)) = 1.847759

comments: 2 kinds of gyrated rhombicuboctahedral-monostratic-cup-ofcantellated-octachoron (elongated square gyrobicupola (J37) as "elongated square cupola (J19) + square cupola" (depending on which being gyrated) and truncated cube as "truncated cube + octagon" (see 4.103 resp. 4.104, and 4.105) joined at the octagonal prism)

cells: 4 octahedra + 4+4 square pyramids + 4+4+4 trigonal prisms + 1 elongated square gyrobicupola + 1+1+4 square cupolae + 1 truncated cube

4.102 rhombicuboctahedron || gyrated truncated cube

height: circumradius: other names: 1/sqrt(2) = 0.707107 sqrt(2+sqrt(2)) = 1.847759

comments: kind of bigyrated rhombicuboctahedral-monostratic-cup-ofcantellated-octachoron (rhombicuboctahedron as "octagonal prism + 2 square cupolae" and truncated cube as "truncated cube + 2 octagons" (see 4.104, 4.105) joined at the octagonal prisms) *cells:* 8+8 square pyramids + 4+8

cells: 8+8 square pyramids + 4+8 trigonal prisms + 1 rhombicuboctahedron + 2+4 square cupolae + 1 truncated cube

4.103 elongated square cupola || truncated cube

height: circumradius: other names: 1/sqrt(2) = 0.707107 sqrt(2+sqrt(2)) = 1.847759

comments:kind of diminishedrhombicuboctahedral-monostratic-cup-of-
cantellated-octachoron (elongated square cupola(J19) as "rhombicuboctahedron - square cupola"
and truncated cube as "truncated cube - octagon")cells:4 octahedra + 4 square pyramids+ 4+4 triangular prisms + 1 elongated square
cupola + 1+4 square cupolae + 1 octagonal prism +
1 truncated cube

4.104 elongated square cupola || gyrated truncated cube

height: circumradius: other names: 1/sqrt(2) = 0.707107sqrt(2+sqrt(2)) = 1.847759

comments: kind of diminished gyrated rhombicuboctahedral-monostratic-cup-ofcantellated-octachoron (elongated square cupola (J19) as "rhombicuboctahedron - 2 square cupolae + square cupola " and truncated cube as "truncated cube - 2 octagons + octagon": diminishing 4.102 resp. gyrating 4.103 as "4.106 + 4.105" joining at an octagonal prism)

cells: 4+4+4 square pyramids + 4+4 trigonal prisms + 1 elongated square cupola + 1+4 square cupolae + 1 octagonal prism + 1 truncated cube

4.105 octagon || square cupola

height:	1/sqrt(2) = 0.707107
shear:	(1+sqrt(2))/2 = 1.207107

4.105.1 square || octagonal prism

height: shear: circumradius: other names:

0sqrt(2+sqrt(2)) = 1.847759

other names: - *comments:* kind of diminished gyrated

1/2

rhombicuboctahedral-monostratic-cup-ofcantellated-octachoron (square cupola as "rhombicuboctahedron - elongated square cupola (J19)" and octagon as "truncated cube - truncated cube") -resp.- kind of bidiminished octahedralmonostratic-cup-of-runcinated-icositetrachoron (square as "octahedron - 2 square pyramids" and octagonal prism as "rhombicuboctahedron - 2 square cupolae")

cells: 4 square pyramids + 4 trigonal prisms + 2 square cupolae + 1 octagonal prism

4.106 octagonal prism || truncated cube

height: 1/sqrt(2) = 0.707107 *circumradius:* sqrt(2+sqrt(2)) = 1.847759

2)) = 1.847759

other names:

comments:kind of bidiminished gyratedrhombicuboctahedral-monostratic-cup-of-cantellated-octachoron (octagonal prism as"rhombicuboctahedron - 2 square cupolae" andtruncated cube as "truncated cube - 2 octagons")cells:8 square pyramids + 4 trigonalprisms + 4 square cupolae + 1+2 octagonal prisms+ 1 truncated cube

4.107 octahedron || rhombicuboctahedron

height:1/2circumradius:sqrt(2+sqrt(2)) = 1.847759other names:octahedral monostratic cup ofruncinated icositetrachoron, octahedral monostraticcup of small prismatotetracontaoctachoroncells:1 octachoron + 6 square pyramids+ 8+12 trigonal prisms + 1 rhombicuboctahedron

4.108 square pyramid || elongated square cupola

height: 1/2 *circumradius:* sqrt(2+sqrt(2)) = 1.847759 *other names:* -

comments: kind of diminished octahedralmonostratic-cup-of-runcinated-icositetrachoron (square pyramid as "octahedron - square pyramid" and elongated square cupola (J19) as

"rhombicuboctahedron - square cupola") *cells:* 1+1+4 square pyramids + 4+4+4 trigonal prisms + 1 elongated square cupola + 1 square cupola

4.109 square pyramid || square cupola

height:1/2circumradius:sqrt(2+sqrt(2)) = 1.847759other names:-comments:kind of diminished octahedral-monostratic-cup-of-runcinated-icositetrachoron(square pyramid as "octahedron - square pyramid"and square cupola as "rhombicuboctahedron -elongated square cupola (J19) ")cells:2 square pyramids + 8 trigonalprisms + 2 square cupolae

4.110 snub dodecahedron || snub dodecahedron

height:1circumradius: $sqrt((7-8*cos^2(x)))/(12-16*cos^2(x))) = 2.213060$ other names:snub-dodecahedral prismcomments:uniform, x is half of thecentriangle underneeth an edge of length 1 in thevertex figure of the snub dodecahedron: <math>cos(x) =(cbrt(9+9*sqrt(5)+sqrt(102+162*sqrt(5)))+cbrt(9+9*sqrt(5)-sqrt(102+162*sqrt(5))))/cbrt(288) =0.857781

cells: 20+60 trigonal prisms + 12 pentagonal prisms + 2 snub dodecahedra

4.111 rhombicosidodecahedron || rhombicosidodecahedron

height:1circumradius:sqrt(3+sqrt(5)) = 2.288246other names:rhombicosidodecahedral prismcomments:uniformcells:20 trigonal prisms + 30 cubes +12 pentagonal prisms + 2 rhombicosidodecahedra

4.112 gyrated rhombicosidodecahedron || gyrated rhombicosidodecahedron

height:

circumradius: other names: prism sqrt(3+sqrt(5)) = 2.288246 gyrated-rhombicosidodecahedral

comments: kind of gyrated rhombicosidodecahedral-prism (twice: gyrated rhombicosidodecahedron (J72) as "diminished rhombicosidodecahedron (J76) + pentagonal cupola" (see 4.116, 4.117) joined at the decagonal prism)

cells: 5+5+5+5 trigonal prisms + 5+5+5+5+10 cubes + 1+1+5+5 pentagonal prisms + 2 gyrated rhombicosidodecahedra

4.113 parabigyrated rhombicosidodecahedron || parbigyrated rhombicosidodecahedron

height: circumradius: sqrt(3+sqrt(5)) = 2.288246other names: parabigyratedrhombicosidodecahedral prism kind of parabigyrated comments: rhombicosidodecahedral-prism (twice: parabigyrated rhombicosidodecahedron (J73) as "parabidiminished rhombicosidodecahedron (J80) + 2 pentagonal cupolae" (see 4.121, 4.117) joined at the decagonal prisms) cells: 10+10 trigonal prisms + 10+10+10 cubes + 2+10 pentagonal prisms + 2 parabigyrated rhombicosidodecahedra

4.114 metabigyrated rhombicosidodecahedron || metabigyrated rhombicosidodecahedron

height:1circumradius:sqrt(3+sqrt(5)) = 2.288246other names:metabigyrated-rhombicosidodecahedral prismcomments:kind of metabigyratedrhombicosidodecahedral-prism (twice:

metabigyrated rhombicosidodecahedron (J74) as "metabidiminished rhombicosidodecahedron (J81) + 2 pentagonal cupolae" (see 4.122, 4.117) joined at the decagonal prisms) *cells:* 2+2+2+4+4+4 trigonal prisms + 1+1+2+2+4+4+4+4+4+4 cubes + 2+2+2+2+4 pentagonal prisms + 2 metabigyrated rhombicosidodecahedra

4.115 trigyrated rhombicosidodecahedron || trigyrated rhombicosidodecahedron

height:1circumradius:sqrt(3+sqrt(5)) = 2.288246other names:trigyrated-rhombicosidodecahedral prismcomments:kind of trigyratedrhombicosidodecahedral-prism (twice: trigyratedrhombicosidodecahedron (J75) as "tridiminishedrhombicosidodecahedron (J83) + 3 pentagonalcupolae" (see xxx, 4.117) joined at the decagonalprisms)

cells: 1+1+3+3+6+6 trigonal prisms + 3+3+3+3+6+6+6 cubes + 3+3+3+3 pentagonal prisms + 2 trigyrated rhombicosidodecahedra

4.116 diminished rhombicosidodecahedron || diminished rhombicosidodecahedron

height: 1 sqrt(3+sqrt(5)) = 2.288246circumradius: other names: diminishedrhombicosidodecahedral prism kind of diminished comments: rhombicosidodecahedral-prism (twice: diminished rhombicosidodecahedron (J76) as "rhombicosidodecahedron - pentagonal cupola") cells: 5+5+5 trigonal prisms + 5+5+5+10 cubes + 1+5+5 pentagonal prisms + 1decagonal prism + 2 diminished rhombicosidodecahedra

4.117 pentagonal cupola || pentagonal cupola

height:

4.117.1 pentagonal prism || decagonal prism

height:sqrt((5-sqrt(5))/10) = 0.525731circumradius:sqrt(3+sqrt(5)) = 2.288246other names:pentagonal-cupolaic prismcomments:kind of diminishedrhombicosidodecahedral-prism (twice: pentagonalcupola as "rhombicosidodecahedron - diminishedrhombicosidodecahedron (J76)")cells:5 trigonal prisms + 5 cubes + 1

pentagonal prism + 1 decagonal prism + 2 pentagonal cupolae

4.118 gyrated paradiminished rhombicosidodecahedron || gyrated paradiminished rhombicosidodecahedron

height: sqrt(3+sqrt(5)) = 2.288246circumradius: gyrated-paradiminishedother names: rhombicosidodecahedral prism comments: kind of diminished gyratedrhombicosidodecahedral-prism (twice: gyrated paradiminished rhombicosidodecahedron (J77) as 'gyrated rhombicosidodecahedron (J72) pentagonal cupola") -resp.- kind of gyrated diminished-rhombicosidodecahedral-prism (twice: gyrated paradiminished rhombicosidodecahedron (J77) as "parabidiminished rhombicosidodecahedron (J80) + pentagonal

cupola" (see 4.121, 4.117) joined at the decagonal prisms)

cells: 5+5+5 trigonal prisms + 5+5+5+10 cubes + 1+5+5 pentagonal prisms + 1 decagonal prism + 2 gyrated paradiminished rhombicosidodecahedra

4.119 gyrated metadiminished rhombicosidodecahedron || gyrated metadiminished rhombicosidodecahedron

height:

sqrt(3+sqrt(5)) = 2.288246circumradius: gyrated-metadiminishedother names: rhombicosidodecahedral prism kind of diminished gyratedcomments: rhombicosidodecahedral-prism (twice: gyrated metadiminished rhombicosidodecahedron (J78) as "gyrated rhombicosidodecahedron (J72) pentagonal cupola") -resp.- kind of gyrated diminished-rhombicosidodecahedral-prism (twice: gyrated metadiminished rhombicosidodecahedron (J78) as "metabidiminished rhombicosidodecahedron (J81) + pentagonal cupola" (see 4.122, 4.117) joined at the decagonal prisms) cells: 1+1+1+2+2+2+2+2 trigonal prisms + 1+1+1+2+2+2+2+2+2+2+2+2+2+2 cubes

4.120 bigyrated diminished rhombicosidodecahedron || bigyrated diminished rhombicosidodecahedron

 $\begin{array}{ll} height: & 1\\ circumradius: & sqrt(3+sqrt(5)) = 2.288246 \end{array}$

other names: bigyrated-diminishedrhombicosidodecahedral prism kind of diminished bigyratedcomments: rhombicosidodecahedral-prism (twice: bigyrated diminished rhombicosidodecahedron (J79) as "metabigyrated rhombicosidodecahedron (J74) pentagonal cupola") -resp.- kind of gyrated gyratedmetadiminished-rhombicosidodecahedral-prism (twice: bigyrated diminished rhombicosidodecahedron (J79) as "gyrated metabidiminished rhombicosidodecahedron (J82) + pentagonal cupola" (see 4.123, 4.117) joined at the decagonal prism) -resp.- kind of bigyrated diminished-rhombicosidodecahedral-prism (twice bigyrated diminished rhombicosidodecahedron (J79) as "tridiminished rhombicosidodecahedron (J83) + 2 pentagonal cupolaa" (see 4.124, 4.117) joined at the decagonal prisms) 1+1+1+2+2+2+2+2 trigonal cells: prisms + 1+1+1+2+2+2+2+2+2+2+2+2+2+2 cubes + 1+1+1+2+2+2+2 pentagonal prisms + 1 decagonal prism + 2 gyrated bidiminished rhombicosidodecahedra

4.121 parabidiminished rhombicosidodecahedron || parabidiminished rhombicosidodecahedron

height:1circumradius:sqrt(3+sqrt(5)) = 2.288246other names:parabidiminished-rhombicosidodecahedral prismcomments:kind of parabidiminishedrhombicosidodecahedral-prism (twice:parabidiminished rhombicosidodecahedron (J80) as"rhombicosidodecahedron - 2 pentagonal cupolae")cells:10 trigonal prisms + 10+10 cubes+ 10 pentagonal prisms + 2 decagonal prisms + 2parabidiminished rhombicosidodecahedra

4.122 metabidiminished rhombicosidodecahedron || metabidiminished rhombicosidodecahedron

height:1circumradius:sqrt(3+sqrt(5)) = 2.288246other names:metabidiminished-rhombicosidodecahedral prismcomments:kind of metabidiminishedrhombicosidodecahedral-prism (twice:metabidiminished rhombicosidodecahedral-prism (twice:metabidiminished rhombicosidodecahedron (J81)as "rhombicosidodecahedron - 2 pentagonalcupolae")

cells: 2+2+2+4 trigonal prisms + 1+1+2+4+4+4 cubes + 2+2+2+4 pentagonal prisms + 2 decagonal prisms + 2 metabidiminished rhombicosidodecahedra

4.123 gyrated bidiminished rhombicosidodecahedron || gyrated bidiminished rhombicosidodecahedron

height:

circumradius: sqrt(3+sqrt(5)) = 2.288246other names: gyrated-bidiminishedrhombicosidodecahedral prism kind of bidiminished gyratedcomments: rhombicosidodecahedral-prism (twice: gyrated bidiminished rhombicosidodecahedron (J82) as "gyrated rhombicosidodecahedron (J72) - 2 pentagonal cupolae") -resp.- kind of gyrated metabidiminished-rhombicosidodecahedral-prism (twice: gyrated bidiminished rhombicosidodecahedron (J82) as "tridiminished rhombicosidodecahedron (J83) + pentagonal cupola" (see 4.124, 4.117) joined at the decagonal prism)

4.124 tridiminished rhombicosidodecahedron || tridiminished rhombicosidodecahedron

height:

circumradius: sqrt(3+sqrt(5)) = 2.288246 *other names:* tridiminishedrhombicosidodecahedral prism *comments:* kind of tridiminished rhombicosidodecahedral-prism (twice: tridiminished rhombicosidodecahedron (J83) as "rhombicosidodecahedron - 3 pentagonal cupolae") *cells:* 1+1+3 trigonal prisms + 3+3+3+6 cubes + 3+3+3 pentagonal prisms + 3 decagonal prisms + 2 tridiminished rhombicosidodecahedra

4.125 truncated cuboctahedron || truncated cuboctahedron

height:1circumradius:sqrt((7+3*sqrt(2))/2) = 2.370932other names:truncated-cuboctahedral prism,great-rhombicosidodecahedral prismuniformcomments:uniformcells:12 cubes + 8 hexagonal prisms +6 octagonal prisms + 2 truncated cuboctahedra

4.126 rhombicosidodecahedron || truncated icosahedron

height: (1+sqrt(5))/4 = 0.809017 *circumradius:* sqrt((106+41*sqrt(5))/32) = 2.485450 *other names: cells:* 30 trigonal prisms + 12

24

pentagonal antiprisms + 20 trigonal cupolae + 1 rhombicosidodecahedron + 1 truncated icosahedron

4.127 truncated icosahedron || truncated icosahedron

height: 1 sqrt((31+9*sqrt(5))/8) = 2.527959circumradius: truncated-icosahedral prism other names: uniform comments: 12 pentagonal prisms + 20 cells: hexagonal prisms + 2 truncated dodecahedra

4.128 truncated cube || truncated cuboctahedron

1/sqrt(2) = 0.707107height: circumradius: sqrt(4+sqrt(8)) = 2.613126other names: truncated-cubical monostratic cup of runcinated tesseract, truncated-cubical monostratic cup of runcinated octachoron, truncated-cubical monostratic cup of prismatorhombated hexadecachoron 12 trigonal prisms + 8 trigonal cells: cupolae + 6 octagonal prisms + 1 truncated cube + 1 truncated cuboctahedron

4.129 cuboctahedron || truncated cube

height: 1/2circumradius: sqrt(4+sqrt(8)) = 2.613126other names: cuboctahedral monostratic cup of cantellated icositetrachoron, cuboctahedral monostratic cup of small rhombated icositetrachoron 8 trigonal prisms + 1 cells: cuboctahedron + 6 square cupolae + 1 truncated cube

4.130 truncated dodecahedron || truncated dodecahedron

height: circumradius: sqrt((39+15*sqrt(5))/8) =3.011250 other names: truncated-dodecahedral prism comments: uniform 20 trigonal prisms + 12 decagonal cells: prisms + 2 truncated dodecahedra

4.131 icosidodecahedron // rhombicosidodecahedron

height: 1/2 sqrt(5+2*sqrt(5)) = 3.077684circumradius: icosidodecahedral cupola, second other names: icosahedral monostratic segment of rectified hexacosichoron cells: 20 octahedra + 30 square

pyramids + 12 pentagonal antiprisms + 1 icosidodecahedron + 1 rhombicosidodecahedron

4.132 icosidodecahedron || diminished rhombicosidodecahedron

height: 1/2sqrt(5+2*sqrt(5)) = 3.077684 circumradius: other names: comments: kind of diminished icosidodecahedral-cupola (icosidodecahedron as "icosidodecahedron - pentagon" and diminished rhombicosidodecahedron (J76) as "rhombicosidodecahedron - pentagonal cupola") 5+5+5 octahedra + 5+5+5+5+10 cells: square pyramids + 1+5+5 pentagonal antiprisms + 1 icosidodecahedron + 1 diminished rhombicosidodecahedron + 1 pentagonal cupola

4.133 pentagon || gyrated pentagonal cupola

height:	1/2
shear:	sqrt((5+2*sqrt(5))/5) = 1.376382

4.133.1 decagon || pentagonal antiprism

height: (sqrt(5)-1)/4 = 0.309017shear: 0 sqrt(5+2*sqrt(5)) = 3.077684circumradius: other names: kind of diminished comments: icosidodecahedral-cupola (pentagon as "icosidodecahedron - icosidodecahedron" and pentagonal cupola as "rhombicosidodecahedron diminished rhombicosidodecahedron") -resp.- kind of bidiminished icosahedral-cupola (decagon as "icosidodecahedra - 2 rotunda" and pentagonal antiprism as "icosahedron - 2 pentagonal pyramids")

cells: 10 square pyramids + 1 pentagonal antiprism + 2 pentagonal cupolae

4.134 icosidodecahedron // parabidiminished rhombicosidodecahedron

height: 1/2circumradius: sqrt(5+2*sqrt(5)) = 3.077684other names: kind of bidiminished comments: icosidodecahedral-cupola (icosidodecahedron as "icosidodecahedron - 2 pentagons" and parabidiminished rhombicosidodecahedron (J80) as "rhombicosidodecahedron - 2 pentagonal cupolae") cells: 10 octahedra + 10+10+10 square pyramids + 10 pentagonal antiprisms + 1 icosidodecahedron + 2 pentagonal cupolae + 1 parabidiminished rhombicosidodecahedron

4.135 icosidodecahedron || metabidiminished rhombicosidodecahedron

height:1/2circumradius:sqrt(5+2*sqrt(5)) = 3.077684other names:-comments:kind of bidiminishedicosidodecahedral-cupola (icosidodecahedron as"icosidodecahedron - 2 pentagons" andmetabidiminished rhombicosidodecahedron (J81)as "rhombicosidodecahedron - 2 pentagonalcupolae")cells:2+2+2+4 octahedra +

1+1+2+2+4+4+4+4+4+4+4+4 square pyramids + 2+2+2+4 pentagonal antiprisms + 1 icosidodecahedron + 2 pentagonal cupolae + 1 metabidiminished rhombicosidodecahedron

4.136 icosidodecahedron || tridiminished rhombicosidodecahedron

height: 1/2sqrt(5+2*sqrt(5)) = 3.077684 circumradius: other names: kind of tridiminished comments: icosidodecahedral-cupola (icosidodecahedron as "icosidodecahedron - 3 pentagons" and tridiminished rhombicosidodecahedron (J83) as "rhombicosidodecahedron - 3 pentagonal cupolae") cells: 1+1+3 octahedra + 3+3+3+3+6+6+6 square pyramids + 3+3+3 pentagonal antiprisms + 1 icosidodecahedron + 3 pentagonal cupolae + 1 tridiminished rhombicosidodecahedron

4.137 icosahedron || icosidodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(5+2*sqrt(5)) = 3.077684other names:icosahedral cupola, icosahedralmonostratic cup of rectified hexacosichoroncells:20 octahedra + 1 icosahedron +12 pentagonal pyramids + 1 icosidodecahedron

4.138 gyroelongated pentagonal pyramid || icosidodecahedron

height: circumradius: other names:

(sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

comments: kind of diminished icosahedralcupola (gyroelongated pentagonal pyramid (J11) as "icosahedron - pentagonal pyramid" and icosidodecahedron as "icosidodecahedron pentagon")

cells: 5+5+5 octahedra + 5 square pyramids + 1 gyroelongated pentagonal pyramid + 1+5+5 pentagonal pyramids + 1 pentagonal prism + 1 icosidodecahedron

4.139 pentagonal pyramid || rotunda

height: circumradius: other names: comments:

(sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

comments:kind of diminished icosahedral-cupola (pentagonal pyramid as "icosahedron -gyroelongated pentagonal pyramid (J11)" androtunda as "icosidodecahedron - rotunda")cells:5 octahedra + 5 square pyramids+ 1+1+5 pentagonal pyramids + 1 rotunda + 1pentagonal cupola

4.140 gyroelongated pentagonal pyramid || rotunda

height: circumradius: (sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

other names: comments: kind of diminished icosahedralcupola (gyroelongated pentagonal pyramid (J11) as "icosahedron - pentagonal pyramid" and rotunda as "icosidodecahedron - rotunda")

cells: 5+5 octahedra + 5 square pyramids + 1 gyroelongated pentagonal pyramid + 1+5 pentagonal pyramids + 1 rotunda + 1 pentagonal cupola

4.141 pentagon || pentagonal pyramid

height: shear: (sqrt(5)-1)/4 = 0.309017 sqrt((5+2*sqrt(5))/5) = 1.376382

4.141.1

point || pentagonal prism

height: shear: sqrt((5-2*sqrt(5))/20) = 0.162460

circumradius: sqrt(5+2*sqrt(5)) = 3.077684 *other names:* pentagonal-prismatic pyramid, pentagonal pentagonal-pyramidal wedge *comments:* kind of diminished icosahedral cupola (pentagonal pyramid as "icosahedron gyroelongated pentagonal pyramid (J11)" and pentagon as "icosidodecahedron icosidodecahedron")

cells: 5 square pyramids + 2 pentagonal pyramids + 1 pentagonal prism

4.142 pentagonal antiprism || icosidodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(5+2*sqrt(5)) = 3.077684other names:-comments:kind of bidiminished icosahedral-cupola (pentagonal antiprism as "icosahedron - 2pentagonal pyramids" and icosidodecahedron - 2pentagonal pyramids" and icosidodecahedron as"icosidodecahedron - 2 pentagons")cells:10 octahedra + 10 squarepyramids + 10 pentagonal pyramids + 1 pentagonalantiprism + 2 pentagonal prisms + 1icosidodecahedron

4.143 metabidiminished icosahedron || icosidodecahedron

height: circumradius: (sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

other names: comments: kind of bidiminished icosahedralcupola (metabidiminished icosahedron (J62) as "icosahedron - 2 pentagonal pyramids" and icosidodecahedron as "icosidodecahedron - 2 pentagons")

cells: 2+2+2+4 octahedra + 2+4+4 square pyramids + 2+2+2+4 pentagonal pyramids + 1 metabidiminished icosahedron + 2 pentagonal prisms + 1 icosidodecahedron

4.144 pentagonal antiprism || rotunda

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(5+2*sqrt(5)) = 3.077684other names:-comments:kind of bidiminished icosahedral-cupola (pentagonal antiprism as "icosahedron - 2pentagonal pyramids" and rotunda as"icosidodecahedron - rotunda - pentagon")cells:5 octahedra + 5+5 squarepyramids + 5 pentagonal pyramids + 1 pentagonalantiprism + 1 pentagonal prism + 1 rotunda + 1pentagonal cupola

4.145 metabidiminished icosahedron || rotunda

height: (sqrt(5)-1)/4 = 0.309017 *circumradius:* sqrt(5+2*sqrt(5)) = 3.077684 *other names:* -

comments:kind of bidiminished icosahedral-cupola (metabidiminished icosahedron (J62) as"icosahedron - 2 pentagonal pyramids" and rotundaas "icosidodecahedron - rotunda - pentagon")cells:1+1+2+2 octahedra + 2+2+2+2square pyramids + 1+2+2 pentagonal pyramids + 1metabidiminished icosahedron + 1 pentagonalprism + 1 rotunda + 1 pentagonal cupola

4.146 pentagon || rotunda

height: (sqrt(5)-1)/4 = 0.309017 *shear:* sqrt((5+sqrt(5))/40) = 0.425325 *circumradius:* sqrt(5+2*sqrt(5)) = 3.077684 *other names:* pentagonal rotundaic wedge *comments:* kind of bidiminished icosahedralcupola (pentagon as "icosahedron - gyroelongated pentagonal pyramid - pentagonal pyramid" and rotunda as "icosidodecahedron - rotunda pentagon")

cells: 5+5 square pyramids + 5 pentagonal pyramids + 1 pentagonal prism + 1 rotunda + 1 pentagonal cupola

4.147 tridiminished icosahedron || icosidodecahedron

height: circumradius:

other names:

(sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

comments: kind of tridiminished icosahedralcupola (tridiminished icosahedron (J63) as "icosahedron - 3 pentagonal pyramids" and icosidodecahedron as "icosidodecahedron - 3 pentagons")

cells: 1+1+3 octahedra + 3+6+6 square pyramids + 3+3+3 pentagonal pyramids + 1 tridiminished icosahedron + 3 pentagonal prisms + 1 icosidodecahedron

4.148 tridiminished icosahedron || rotunda

height: circumradius: other names: (sqrt(5)-1)/4 = 0.309017 sqrt(5+2*sqrt(5)) = 3.077684

comments: kind of tridiminished icosahedralcupola (tridiminished icosahedron (J63) as "icosahedron - 3 pentagonal pyramids" and rotunda as "icosidodecahedron - rotunda - 2 pentagons") *cells:* 1+1 octahedra + 1+2+2+2+2+2 square pyramids + 1+1+2 pentagonal pyramids + 1 tridiminished icosahedron + 2 pentagonal prisms + 1 rotunda + 1 pentagonal cupola

4.149 truncated octahedron || truncated cuboctahedron

height:1/2circumradius:sqrt(8+3*sqrt(2)) = 3.498949other names:truncated-octahedral monostraticcup of runcitruncated icositetrachoron, truncated-octahedral monostratic cup of prismatorhombatedicositetrachoron

cells: 12 trigonal prisms + 8 hexagonal prisms + 6 square cupolae + 1 truncated octahedron + 1 truncated cuboctahedron

4.150 truncated icosidodecahedron // truncated icosidodecahedron

height:1circumradius:sqrt(8+3*sqrt(5)) = 3.835128other names:truncated-icosidodecahedralprism, great-rhombicosidodecahedral prismcomments:comments:uniformcells:30 cubes + 20 hexagonal prisms +12 decagonal prisms + 2 truncatedicosidodecahedra

4.151 truncated icosahedron || truncated dodecahedron

height:1/2circumradius:sqrt(8+3*sqrt(5)) = 3.835128other names:-cells:30 tetrahedra + 20 trigonal

cupolae + 12 pentagonal cupolae + 1 truncated icosahedron + 1 truncated dodecahedron

4.152 dodecahedron || rhombicosidodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:3+sqrt(5) = 5.236068other names:dodecahedral monostratic cup ofruncinated hecatonicosachoron, dodecahedralmonostratic cup of runcinated hexacosichoron,dodecahedral monostratic cup of smalldiprismatohexacosihecatonicosachoroncells:20 tetrahedra + 30 trigonal prisms+ 12 pentagonal prisms + 1 dodecahedron + 1rhombicosidodecahedron

4.153 dodecahedron || diminished rhombicosidodecahedron

height: (sqrt(5)-1)/4 = 0.309017circumradius: 3 + sqrt(5) = 5.236068other names: comments: kind of diminished dodecahedronal-monostratic-cup-of-runcinatedhecatonicosachoron (dodecahedron as "dodecahedron - pentagon" and diminished rhombicosidodecahedron (J76) as "rhombicosidodecahedron - pentagonal cupola") 5+5+5 tetrahedra + 5+5+5+10 cells: trigonal prisms + 1+5+5 pentagonal prisms + 1 dodecahedron + 1 diminished rhombicosidodecahedron + 1 pentagonal cupola

4.154 pentagon || pentagonal cupola

height: (sqrt(5)-1)/4 = 0.309017 *shear:* sqrt((25+11*sqrt(5))/40) = 1.113516

4.154.1	decagon pentagonal		
prism			
height:	sqrt((5-2*sqrt(5))/20) = 0.162460		
shear:	0		
circumradius:	3 + sqrt(5) = 5.236068		
other names:	pentagonal pentagonal-cupolaic		
wedge			
comments:	kind of diminished		
dodecahedronal-	monostratic-cup-of-runcinated-		

hecatonicosachoron (pentagon as "dodecahedron dodecahedron" and pentagonal cupola as "rhombicosidodecahedron - diminished rhombicosidodecahedron (J76)") *cells:* 5 tetrahedra + 5 trigonal prisms + 1 pentagonal prism + 2 pentagonal cupolae

4.155 dodecahedron || parabidiminished rhombicosidodecahedron

height: circumradius: (sqrt(5)-1)/4 = 0.309017 3+sqrt(5) = 5.236068 other names:

comments:kind of bidiminisheddodecahedronal-monostratic-cup-of-runcinated-
hecatonicosachoron (dodecahedron as
"dodecahedron - 2 pentagons" and
parabidiminished rhombicosidodecahedron (J80) as
"rhombicosidodecahedron - 2 pentagonal cupolae")
cells:10 tetrahedra + 10+10 trigonal
prisms + 10 pentagonal prisms + 1 dodecahedron +
2 pentagonal cupolae + 1 parabidiminished
rhombicosidodecahedron

4.156 dodecahedron || metabidiminished rhombicosidodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:3+sqrt(5) = 5.236068other names:-comments:kind of bidiminisheddodecahedronal-monostratic-cup-of-runcinated-hecatonicosachoron (dodecahedron as"dodecahedron - 2 pentagons" andmetabidiminished rhombicosidodecahedron (J81)as "rhombicosidodecahedron - 2 pentagonalcupolae")cells:2+2+2+4 tetrahedra +

2+2+2+4 tetrahedra + 1+1+2+4+4+4 trigonal prisms + 2+2+2+4 pentagonal prisms + 1 dodecahedron + 2 pentagonal cupolae + 1 metabidiminished rhombicosidodecahedron

4.157 dodecahedron || tridiminished rhombicosidodecahedron

height: (sqrt(5)-1)/4 = 0.309017circumradius: 3 + sqrt(5) = 5.236068other names: kind of tridiminished comments: dodecahedronal-monostratic-cup-of-runcinatedhecatonicosachoron (dodecahedron as "dodecahedron - 3 pentagons" and tridiminished rhombicosidodecahedron (J83) as "rhombicosidodecahedron - 3 pentagonal cupolae") cells: 1+1+3 tetrahedra + 3+3+3+6 trigonal prisms + 3+3+3 pentagonal prisms + 1 dodecahedron + 3 pentagonal cupolae + 1 tridiminished rhombicosidodecahedron

4.158 icosidodecahedron || truncated icosahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(19+8*sqrt(5)) = 6.073594other names:icosidodecahedral monostraticcup of cantellated hexacosichoron,icosidodecahedral monostratic cup of smallrhombated hexacosichoron12 pentagonal prisms + 20trigonal cupolae + 1 icosidodecahedron + 1truncated icosahedron

4.159 rhombicosidodecahedron || truncated dodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(23+10*sqrt(5)) = 6.735034other names:rhombicosidodecahedralmonostratic cup of cantellated hecatonicosachoron,rhombicosidodecahedral monostratic cup of smallrhombated hecatonicosachoron

cells: 20 octahedra + 30 trigonal prisms + 1 rhombicosidodecahedron + 12 pentagonal cupolae + 1 truncated dodecahedron

4.160 gyrated rhombicosidodecahedron || truncated dodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(23+10*sqrt(5)) = 6.735034other names:-comments:kind of gyrated

rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (gyrated rhombicosidodecahedron (J72) as "diminished rhombicosidodecahedron (J76) + pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron + decagon" (see 4.164, 4.165) joining at the decagonal prism)

cells: 5+5+5 octahedra + 5+5 square pyramids + 5+5+5+10 trigonal prisms + 1 gyrated rhombicosidodecahedron + 1+1+5+5pentagonal cupolae + 1 truncated dodecahedron

4.161 parabigyrated rhombicosidodecahedron || truncated dodecahedron

height: circumradius: other names: (sqrt(5)-1)/4 = 0.309017 sqrt(23+10*sqrt(5)) = 6.735034

comments: kind of bigyrated rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (parabigyrated rhombicosidodecahedron (J73) as

"parabidiminished rhombicosidodecahedron (J80) + 2 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron + 2 decagons" (see 4.169, 4.165) joining at the decagonal prism) *cells:* 10 octahedra + 10+10 square pyramids + 10+10+10 trigonal prisms + 1 parabigyrated rhombicosidodecahedron + 2+10 pentagonal cupolae + 1 truncated dodecahedron

4.162 metabigyrated rhombicosidodecahedron || truncated dodecahedron

height:(sqrt(5)-1)/4 = 0.309017circumradius:sqrt(23+10*sqrt(5)) = 6.735034other names:-comments:kind of bigyratedrhombicosidodecahedral-monostratic-cup-of-

cantellated-hecatonicosachoron (metabigyrated rhombicosidodecahedron (J74) as

"metabidiminished rhombicosidodecahedron (J81) + 2 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron + 2

decagons" (see 4.170, 4.165) joining at the decagonal prism)

cells: 2+2+2+4 octahedra + 2+2+4+4+4+4 square pyramids + 1+1+2+2+4+4+4+4+4 trigonal prisms + 1 metabigyrated rhombicosidodecahedron + 2+2+2+2+4 pentagonal cupolae + 1 truncated dodecahedron

4.163 trigyrated rhombicosidodecahedron || truncated dodecahedron

height: circumradius:

other names:

(sqrt(5)-1)/4 = 0.309017 sqrt(23+10*sqrt(5)) = 6.735034

comments: kind of trigyrated rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (trigyrated rhombicosidodecahedron (J75) as "tridiminished rhombicosidodecahedron (J83) + 3 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron + 3 decagons" (see 4.172, 4.165) joining at the decagonal prism)

cells: 1+1+3 octahedra + 3+3+6+6+6+6 square pyramids + 3+3+3+3+6+6+6 trigonal prisms + 1 trigyrated rhombicosidodecahedron + 3+3+3+3 pentagonal cupolae + 1 truncated dodecahedron

4.164 diminished rhombicosidodecahedron || truncated dodecahedron

(sqrt(5)-1)/4 = 0.309017height: circumradius: sqrt(23+10*sqrt(5)) = 6.735034other names: kind of diminished comments: rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (diminished rhombicosidodecahedron (J76) as "rhombicosidodecahedron - pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron - decagon") cells: 5+5+5 octahedra + 5 square pyramids + 5+5+5+10 trigonal prisms + 1 decagonal prism + 1 diminished rhombicosidodecahedron + 1+5+5 pentagonal cupolae + 1 truncated dodecahedron

4.165 decagon || pentagonal cupola

height: shear: 2.489893 (sqrt(5)-1)/4 = 0.309017 sqrt((25+11*sqrt(5))/8) =

4.165.1 pentagon || decagonal prism

height:sqrt((5-2*sqrt(5))/20) = 0.162460shear:0circumradius:sqrt(23+10*sqrt(5)) = 6.735034other names:decagonal pentagonal-cupolaicwedgekind of diminished

rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (pentagonal cupola as "rhombicosidodecahedron - diminished rhombicosidodecahedron (J76)" and decagon as "truncated dodecahedron - truncated dodecahedron")

cells: 5 square pyramids + 5 trigonal prisms + 1 decagonal prism + 2 pentagonal cupolae

4.166 gyrated paradiminished rhombicosidodecahedron || truncated dodecahedron

height: (sqrt(5)-1)/4 = 0.309017 *circumradius:* sqrt(23+10*sqrt(5)) = 6.735034 *other names: comments:* kind of gyrated rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (gyrated paradiminished rhombicosidodecahedron (J77) as "parabidiminished rhombicosidodecahedron (J80)

'parabidiminished rhombicosidodecahedron (J80) + pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron + decagon" (see 4.169, 4.165) joining at a decagonal prism) -resp.- kind of diminished rhombicosidodecahedral-monostraticcup-of-cantellated-hecatonicosachoron (gyrated paradiminished rhombicosidodecahedron (J77) as "gyrated rhombicosidodecahedron (J72) pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron - decagon") cells: 5+5 octahedra + 5+5+5 square pyramids + 5+5+5+10 trigonal prisms + 1+5+5 pentagonal cupolae + 1 decagonal prism + 1 gyrated paradiminished rhombicosidodecahedron + 1 truncated dodecahedron

4.167 gyrated metadiminished rhombicosidodecahedron || truncated dodecahedron

height: circumradius: other names: comments:

(sqrt(5)-1)/4 = 0.309017 sqrt(23+10*sqrt(5)) = 6.735034

kind of gyrated

rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (gyrated metadiminished rhombicosidodecahedron (J78) as "metabidiminished rhombicosidodecahedron (J81) + pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron + decagon" (see 4.170, 4.165) joining at a decagonal prism) -resp.- kind of diminished rhombicosidodecahedral-monostraticcup-of-cantellated-hecatonicosachoron (gyrated

4.168 bigyrated diminished rhombicosidodecahedron || truncated dodecahedron

height: circumradius: other names: (sqrt(5)-1)/4 = 0.309017 sqrt(23+10*sqrt(5)) = 6.735034

kind of bigyrated comments: rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (bigyrated diminished rhombicosidodecahedron (J79) as "tridiminished rhombicosidodecahedron (J83) + 2pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron + 2 decagons" (see 4.172, 4.165) joining at decagonal prisms) -resp.- kind of diminished rhombicosidodecahedral-monostraticcup-of-cantellated-hecatonicosachoron (bigyrated diminished rhombicosidodecahedron (J79) as "metabigyrated rhombicosidodecahedron (J74) pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron - decagon") 1+1+1+2 octahedra + cells: 1+2+2+2+2+2+2+2+2+2+2+2+2+2 square pyramids + 1+1+1+2+2+2+2+2+2+2+2+2+2+2 trigonal prisms + 1+1+1+2+2+2+2 pentagonal cupolae + 1 decagonal prism + 1 bigyrated diminished rhombicosidodecahedron + 1 truncated dodecahedron

4.169 parabidiminished rhombicosidodecahedron || truncated dodecahedron

height: (sqrt(5)-1)/4 = 0.309017circumradius: sqrt(23+10*sqrt(5)) = 6.735034other names: comments: kind of bidiminished rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (parabidiminished rhombicosidodecahedron (J80) as "rhombicosidodecahedron - 2 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron - 2 decagons") 10 octahedra + 10 square cells: pyramids + 10+10 trigonal prisms + 2 decagonal prisms + 10 pentagonal cupolae + 1 parabidiminished rhombicosidodecahedron + 1 truncated dodecahedron

4.170 metabidiminished rhombicosidodecahedron || truncated dodecahedron

(sqrt(5)-1)/4 = 0.309017height: sqrt(23+10*sqrt(5)) = 6.735034circumradius: other names: kind of bidiminished comments: rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (metabidiminished rhombicosidodecahedron (J81) as "rhombicosidodecahedron - 2 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron - 2 decagons") cells: 2+2+2+4 octahedra + 2+4+4 square pyramids + 1+1+2+4+4+4 trigonal prisms + 2 decagonal prisms + 2+2+2+4 pentagonal cupolae + 1 metabidiminished rhombicosidodecahedron + 1 truncated dodecahedron

4.171 gyrated bidiminished rhombicosidodecahedron // truncated dodecahedron

height: circumradius: other names:

(sqrt(5)-1)/4 = 0.309017sqrt(23+10*sqrt(5)) = 6.735034

kind of gyrated comments: rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (gyrated bidiminished rhombicosidodecahedron (J82) as "tridiminished rhombicosidodecahedron (J83) + pentagonal cupola" and truncated dodecahedron as "truncated dodecahedron + decagon" (see 4.172, 4.165) joining at a decagonal prism) -resp.- kind of bidiminished rhombicosidodecahedral-monostraticcup-of-cantellated-hecatonicosachoron (gyrated bidiminished rhombicosidodecahedron (J82) as "gyrated rhombicosidodecahedron (J72) - 2 pentagonal cupolae" and truncated dodecahedron as "truncated dodecahedron - 2 decagons") 1+1+1+2 octahedra + cells: 1+1+2+2+2+2+2+2+2+2+2 square pyramids + 1+1+1+1+2+2+2+2+2+2+2 trigonal prisms + 2 decagonal prisms + 1+1+1+1+2+2+2 pentagonal cupolae + 1 gyrated bidiminished rhombicosidodecahedron + 1 truncated dodecahedron

4.172 tridiminished rhombicosidodecahedron // truncated dodecahedron

height: circumradius: other names:

(sqrt(5)-1)/4 = 0.309017sqrt(23+10*sqrt(5)) = 6.735034

kind of tridiminished comments: rhombicosidodecahedral-monostratic-cup-ofcantellated-hecatonicosachoron (tridiminished rhombicosidodecahedron (J83) as

"rhombicosidodecahedron - 3 pentagonal cupolae"

and truncated dodecahedron as "truncated dodecahedron - 3 decagons") 1+1+3 octahedra + 3+3+6 square cells: pyramids + 3+3+3+6 trigonal prisms + 3 decagonal prisms + 3+3+3 pentagonal cupolae + 1 tridiminished rhombicosidodecahedron + 1 truncated dodecahedron

4.173 truncated dodecahedron || truncated icosidodecahedron

(sqrt(5)-1)/4 = 0.309017height: circumradius: sqrt(48+21*sqrt(5)) = 9.744610other names: truncated-dodecahedral monostratic cup of runcitruncated hecatonicosachoron, truncated-dodecahedral monostratic cup of prismatorhombated hexacosichoron

30 trigonal prisms + 20 trigonal cells: cupolae + 12 decagonal prisms + 1 truncated dodecahedron + 1 truncated icosidodecahedron

4.174 n-gon || n-antiprism (n == 2, 3, 4, 5, 6, 8, 10)

height:

sqrt((1+3*cos(pi/n))/(2+4*cos(pi/n)))shear:

 $1/sqrt(8+24*cos(pi/n)+16*cos^2(pi/n))$

4.174.1 n-gon || gyrated n-prism (n == 3, 4, 5, 6, 8, 10)

height:

sqrt((1+3*cos(pi/n))/(4+4*cos(pi/n)))shear: circumradius: $sqrt((1+2*\cos(pi/n) 2*\cos^2(pi/n))/(2+4*\cos(pi/n)-6*\cos^2(pi/n)))$ other names: general n-gonal n-antiprismatic wedge n tetrahedra + n square pyramids cells: + 2 n-antiprisms + 1 n-prism

4.175 n-gon || n-prism (n = 4, 4, 5, 6, 8, 10)

height: sqrt(3/4) = 0.866025shear: $sqrt((4+3*csc^2(pi/n))/12)$ circumradius: trigon- n-gon -diprism, direct sum other names: of trigon and n-gon, n-gonal n-prismatic wedge comments: uniform cells: n trigonal prisms + 3 n-gonal prisms

4.176 n-gonal antiprism || n-gonal antiprism (n =/= 2, 3, 4, 5, 6, 8, 10) 1

height:

4.176.1 n-gonal prism || gyrated n-gonal prism (n =/= 3, 4, 5, 6, 8, 10)

height:

sqrt((1+	2*cos(pi/n))/(2+2*cos(pi/n)))
circumradius:	sqrt((5-4*cos(pi/n))/(8-
8*cos(pi/n)))	
other names:	general n-gonal-antiprismatic
prism	
comments:	uniform
cells:	2n trigonal prisms + 2 n-gonal
antiprisms + 2 n-	gonal prisms

4.177 n-gonal prism || n-gonal prism (n ⊧ 3, 4, 5, 6, 8, 10)

height:1circumradius:sqrt(2+csc^2(pi/n))/2other names:general n-gonal-prismatic prism,square- n-gon -diprism, direct sum of square and n-goncomments:uniformcells:n cubes + 4 n-gonal prisms

5 Index

abriv.	Name				
line	line segment				
10a	decagon				
30	trigon				
4g	square, tetragon				
5g	pentagon				
6g	hexagon				
8g 8g	octagon				
n-a	general n-gon				
10ap	decagonal antiprism				
10p	decagonal prism				
2ap	see tet				
2cup	see 3p				
3ap	see oct				
oup	trigonal cupola .13 half of				
3cup	cuboctahedron				
0000	trigonal prism digonal cupola				
3n	square wedge				
3pyr	see tet				
4ap	square antiprism				
iap	square cupola .14 kind of				
4cup	diminished rhombicuboctahedron				
4n	cube hexahedron square prism				
4pyr	square pyramid .11 trigonal wedge				
1091	pentagonal antiprism				
5an	parabidiminished icosahedron				
Joup	pentagonal cupola, kind of				
	diminished				
5cup	rhombicosidodecahedron				
5p	pentagonal prism				
	pentagonal pyramid, J2, kind of				
5pyr	diminished icosahedron				
6ap	hexagonal antiprism				
6p	hexagonal prism				
8ap	octagonal antiprism				
•	octagonal prism, prabidimnishd				
8p	rhombicuoctahedron				
•	cuboctahedrn,				
со	rhombitetratetrahedron				
cube	see 4p				
doe	dodcaedron				
	truncated cuboctahedron, great				
girco	rhomicuboctahedron				
	truncated icosidodecahedron, great				
grid	rhombicoidoecahedron				
id	icosidodecahedron				
ike	icosahdron, snub tetratetrahedron				
J1	see 4pyr				
	gyroelongated pentagonal pyramid,				
J11	kind of diminished icosahedron				
	elongated square cupola, kind of				
J19	diminishd rhombicuboctahedron				
J2	see 5pyr				
J27	trigonal orthobicupola, gyrated				

abriv.	Name			
	cuboctahedron			
J3	see 3cup			
	orthobirotunda, gyrated			
J34	icosidodecahedron			
	elongated square gyrobicupola,			
J37	gyrated rhombicuboctahedron			
J4	see 4cup			
J5	see 5cup			
J6	rotunda, half of icosidodecahedron			
J62	metabidiminished icosahedron			
J63	tridiminished icosahedron			
J72	gyrated rhombicosidodecahedron			
	parabigyrated			
J73	rhombicosidodecahedron			
	metabigyrated			
J74	rhombicosidodecahedron			
J75	trigyrated rhombicosidodecahedron			
	diminished			
J76	rhombicosidodecahedron			
	gyrated paradiminished			
J77	rhombicosidodecahedron			
	gyrated metadiminished			
J78	rhombicosidodecahedron			
	bigyrated diminished			
J79	rhobicosidodecahedron			
	parabidiminished			
J80	rhombicosidodecahedron			
	metabidiminished			
J81	rhombicosidodecahedron			
	gyrated bidiminished			
J82	rhobicosidodecahedron			
	tridiminished			
J83	rhombicosidodecahedron			
n-ap	general n-gonal aniprism			
n-p	general n-gonal prism			
	octahedron, trigonal antiprism,			
oct	tetratetrahedon			
rot	see J6			
SIRCO	(small) rhombicuboctahedron			
snic	snub cube, snub cuboctahedron			
	snub dodecahedron, snub			
snid	icosidodecanedron			
square	see 4g			
srid	(small) rhomicosidodecahedron			
tet	tetrahedron			
ti	truncated icosahedron			
tic	truncated cube			
tid	truncated dodecahedron			
toe	truncated octahedron			
trig	see 3g			
tut	truncated tetrahedron			
dip	diprism, duoprism			
hex	hexadecachoron			
ico	icositetrachoron			

abriv.	Name
pen	pentachoron
	runcitruncated icositetrachoron,
prico	prismatorhombated icositetrachoron
	runcitruncated pentachoron,
prip	prismatorhombated pentachoron
	runcitruncated hecatonicosachoron,
prix	prismatorhombated hexacosichoron
	runcitruncated tesseract,
	runcitruncated octachoron,
proh	prismtorhombated hexadecachoron
rap	rectified pentachoron
rico	rectifed icositetrachoron
	rectified tesseract, rectified
rit	octachoron
rox	rectified hexacosichoron
	runcinated tesseract, runcinated
	octachoron, runcinated
	hexadecachoron, small
	diprismatotesseractihexadecachoro
sidpith	n
	runcinated hecatonicosachoron,
sidpixhi	runcinated hexacosichoron, small

abriv.	Name
	diprismatohexacosihecatonicosacho
	ron
	runcinated icositetrachoron, small
spic	prismatotetracontaoctachoron
	runcinated pentachoron,(small)
spid	prismatodecachoron
	cantellated hecatonicosachoron,
	small rhombated
srahi	hecatonicosachoron
	cantellated icositetrachoron, small
srico	rhombated icositetrachoron
	cantellated pentachoron, small
	rhombated pentachoron, (small)
srip	prismatodispentachoron
	cantellated tesseract, cantellated
	octachoron, small rhombated
srit	tesseract
	cantellated hexacosichoron, small
srix	rhombated hexacosichoron
tes	tesseract, octachoron

Table 3: some abreviations for facets and polychora

This index references to the list, again using the form "x \parallel y", but this time it uses abreviations for the top and bottom facets (essentially the numbers of the Johnson solids respectively most of the shortnames introduced by J. Bowers, see Table 3). Further this listing is completely lexicographic.

10ap 10ap	4.96	3g gyro 3p	4.6.2	4g 4g	3.6
10ap 10g	4.93	3g gyro tet	4.3.1	4g 4p	4.18.1
10g 10g	3.17	3g incl 3g	4.4.2	4g 4pyr	4.26
10g 10p	4.94	3g J63	4.33	4g 8g	3.15
10g 5ap	4.133.1	3g line	3.3	4g 8p	4.105.1
10g 5cup	4.165	3g oct	4.6.1	4g co	4.28
10g 5g	3.18	3g ortho 4g	4.7.3	4g dual 4g	3.5
10g 5p	4.154.1	3g perp line	4.1.1	4g gyro 4pyr	4.17
10g dual 10g	3.16	3g point	3.1	4g gyro 4p	4.14.1
10g gyro 10p	4.93.1	3g tet	4.7.1	4g line	3.4.1
10p 10p	4.97	3p 3p	4.18	4g ortho 4g	4.9.2
10p 5g	4.165.1	3p 4g	4.12.1	4g perp line	4.4.3
10p 5p	4.117.1	3p 6g	4.25.1	4g point	3.3
10p gyro 10p	4.96.1	3p 6p	4.45.1	4g tet	4.8.1
3cup 3cup	4.45	3p gyro 3p	4.11.1	4p 4p	4.20
3cup 3g	4.24	3p ortho line	4.8.2	4p 8g	4.73.1
3cup 4pyr	4.32	3p para line	4.9.1	4p 8p	4.69.1
3cup 6g	4.51	3p point	4.7.2	4p co	4.35
3cup gyro 3g	4.27	3p refl ortho 3	p 4.13	4p gyro 4p	4.19.1
3cup oct	4.30	4ap 4ap	4.19	4p gyro 4pyr	4.16
3cup tet	4.24	4ap 4g	4.14	4p ike	4.21
3cup tut	4.50	4ap 8g	4.64.1	4p J19	4.72
3g 3g	3.4	4ap point	4.17.1	4p line	4.12.2
3g 3p	4.10	4cup 4cup	4.69	4p oct	4.15
3g∥4pyr	4.8	4cup 4pyr	4.109	4p point	4.26.1
3g 6g	3.10	4cup ∥ 4g	4.73	4p sirco	4.71
3g 6p	4.51.1	4cup 8g	4.105	4pyr 4pyr	4.12
3g dual 3g	3.2	4cup∥gyro 4g	4.64	4pyr co	4.31

4pyr J19	4.108	doe doe	4.74	J76 tid	4.164
4pyr line	4.7	doe id	4.77	J77 J77	4.118
4pyr point	4.4	doe ike	4.78	J77 tid	4.166
4pyr tet	4.6	doe J11	4.79	J78 J78	4.119
5ap 5ap	4.39	doe J62	4.82	J78 tid	4.167
$5an \parallel 5g$	4.22	doe 163	4.83	J79 J79	4.120
5ap doe	4 81	doe 176	4 153	179 tid	4 168
5an id	4 142	doe 180	4 155	180 180	4 121
$5ap \parallel I6$	4 144	doe 181	4 156	180 tid	4 169
5ap point	4 80 1	doe 183	4 157	181 181	4 1 2 2
Scup Scup	4 117	doe srid	4 152	I81 tid	4 170
Scup Scup	4.117	girco girco	4.132	182 182	4.170
$5 \operatorname{cup} \parallel \operatorname{syro} 5 \operatorname{g}$	4 133	girco tic	4.123	182 tid	4.123
$5 \text{ cup } \parallel 5 \text{ g}$	3.0	girco II toe	4.120	183 183	4 124
5g 5g	3.9 4.24	grid II grid	4.149	JOJ JOJ 192 4:4	4.124
Sg II Sp	4.54	grid tid	4.130	Jos II lina	4.172
Sg Spyl	4.141		4.175	line norm line	2.2
Sg II dual Sg	3.7 4 22 1	10 10 : d :1	4.90	line perp line	3.1.1 2.1
Sg II gyro Sp	4.22.1	$10 \parallel 1ke$	4.137	line point	2.1
Sg gyro Spyr	4.80		4.138	line tet	4.4.1
5g J6	4.146	1d J62	4.143	n-ap∥n-ap	4.176
Sg perp line	4.86.1	1d J63	4.147	n-ap n-g	4.174
5g point	3.8	1d J76	4.132	n-g dual n-g	3.19
5p 5p	4.42	id J80	4.134	n-g gyro n-p	4.174.1
5p gyro 5p	4.39.1	id J81	4.135	n-g∥n-g	3.20
5p line	4.38.1	id J83	4.136	n-g∥n-p	4.175
5p point	4.141.1	id srid	4.131	n-p gyro n-p	4.176.1
5pyr 5pyr	4.38	id ti	4.158	n-p n-p	4.177
5pyr J6	4.139	ike ike	4.36	oct oct	4.11
5pyr point	4.86	ike point	4.84	oct point	4.3
6ap 6ap	4.53	J11 J11	4.37	oct sirco	4.107
6ap 6g	4.46	J11 J6	4.140	oct tet	4.5
6g 6g	3.12	J11 point	4.85	oct tut	4.52
6g 6p	4.47	J19 gyro tic	4.104	point point	line
6g dual 6g	3.11	J19 J19	4.68	point tet	4.1
6g gyro 6p	4.46.1	J19 tic	4.103	sirco gyro tic	4.102
6g oct	4.27.1	J27 J27	4.44	sirco sirco	4.66
6р 6р	4.54	J27 tut	4.49	sirco tic	4.100
6p gyro 6p	4.53.1	J34 J34	4.91	sirco toe	4.75
8ap 8ap	4.65	J37 J37	4.67	snic snic	4.60
8ap 8g	4.58	J37 tic	4.101	snid snid	4.110
8g 8g	3.14	J6 J6	4.92	srid srid	4.111
8g 8p	4.59	J6 J62	4.145	srid ti	4.126
8g dual 8g	3.13	J6 J63	4.148	srid tid	4.159
8g gyro 8p	4.58.1	J62 J62	4.40	tet dual tet	4.2
8n 8n	4.70	$J62 \parallel point$	4.87	tet tet	4.9
$8n \parallel co$	4 63	I63 I63	4 41	tet tut	4 56
$8n \parallel gyro 8n$	4 65 1	I63 point	4 88	ti ti	4 127
$8n \parallel tic$	4 106	$172 \parallel 172$	4 112	ti tid	4 151
	4 43	172 tid	4 160	tic tic	4 99
$co \parallel I19$	4 62	I73 I73	4 113	tic II toe	4 98
	4 29	173 fid	4 161	tid tid	4 130
coll sirco	т. <i>23</i> Л 61	174 174	т.101 Л 11Л		4.130
coll tet	4.01	J/4 J/4 17/ 44	4.114 1.162		4.09 176
	т.23 Л 120	J / 4 UU 175 175	+.102 1 115	tut ll inv tut	4.70
	4.129	J/J J/J T75 4:4	4.11J 1 162	tut IIIV tut	4.33
	4.9J		4.105	iui iui	4.37
co II tut	4.48	1/0 1/0	4.110		