| Acronym | ... |
| Name | general variant of triddap |
| Circumradius | sqrt[(a2+b2)/3] |
| Face vector | 18, 72, 84, 30 |
| Confer |
No uniform realisation is possible for any of those ao3ob bo3oa&#zc. Even so all are isogonal.
Incidence matrix according to Dynkin symbol
ao3ob bo3oa&#zc → height = 0
1/2 < b:a < 2
c = sqrt[2(a2-ab+b2)/3]
(c-laced tegum sum of 2 bidual (a,b)-sized triddips)
o.3o. o.3o. & | 18 | 2 2 4 | 1 1 6 6 | 4 2 2
------------------+----+----------+-----------+-------
a. .. .. .. & | 2 | 18 * * | 1 0 2 0 | 2 1 0 a
.. .. b. .. & | 2 | * 18 * | 0 1 0 2 | 2 0 1 b
oo3oo oo3oo&#c | 2 | * * 36 | 0 0 2 2 | 2 1 1 c
------------------+----+----------+-----------+-------
a.3o. .. .. & | 3 | 3 0 0 | 6 * * * | 2 0 0 a-{3}
.. .. b.3o. & | 3 | 0 3 0 | * 6 * * | 2 0 0 b-{3}
ao .. .. ..&#c & | 3 | 1 0 2 | * * 36 * | 1 1 0 acc
.. ob .. ..&#c & | 3 | 0 1 2 | * * * 36 | 1 0 1 bcc
------------------+----+----------+-----------+-------
ao3ob .. ..&#c & | 6 | 3 3 6 | 1 1 3 3 | 12 * * conic 3ap
ao .. .. oa&#c | 4 | 2 0 4 | 0 0 4 0 | * 9 * disphenoid
.. ob bo ..&#c | 4 | 0 2 4 | 0 0 0 4 | * * 9 disphenoid
© 2004-2025 | top of page |