Acronym ... Name general variant of triddap Circumradius sqrt[(a2+b2)/3] Confer more general variants: case 0 < b:a < 1/2 or 2 < b:a < ∞  /  case b:a = 1/2 or b:a = 2  /  this case 1/2 < b:a < 2   with esp. case b:a = 1 general polytopal classes: isogonal

No uniform realisation is possible for any of those ao3ob bo3oa&#zc. Even so all are isogonal.

Incidence matrix according to Dynkin symbol

```ao3ob bo3oa&#zc   → height = 0
1/2 < b:a < 2
c = sqrt[2(a2-ab+b2)/3]
(c-laced tegum sum of 2 bidual (a,b)-sized triddips)

o.3o. o.3o.     & | 18 |  2  2  4 | 1 1  6  6 |  4 2 2
------------------+----+----------+-----------+-------
a. .. .. ..     & |  2 | 18  *  * | 1 0  2  0 |  2 1 0  a
.. .. b. ..     & |  2 |  * 18  * | 0 1  0  2 |  2 0 1  b
oo3oo oo3oo&#c    |  2 |  *  * 36 | 0 0  2  2 |  2 1 1  c
------------------+----+----------+-----------+-------
a.3o. .. ..     & |  3 |  3  0  0 | 6 *  *  * |  2 0 0  a-{3}
.. .. b.3o.     & |  3 |  0  3  0 | * 6  *  * |  2 0 0  b-{3}
ao .. .. ..&#c  & |  3 |  1  0  2 | * * 36  * |  1 1 0  acc
.. ob .. ..&#c  & |  3 |  0  1  2 | * *  * 36 |  1 0 1  bcc
------------------+----+----------+-----------+-------
ao3ob .. ..&#c  & |  6 |  3  3  6 | 1 1  3  3 | 12 * *  conic 3ap
ao .. .. oa&#c    |  4 |  2  0  4 | 0 0  4  0 |  * 9 *  disphenoid
.. ob bo ..&#c    |  4 |  0  2  4 | 0 0  0  4 |  * * 9  disphenoid
```