| Acronym | ... |
| Name | 4oct (?) |
| Circumradius | 1/sqrt(2) = 0.707107 |
| Vertex figure |
4[(6/2)4] (type A) 2[35,6/2,3,6/2]/2 (type B) |
| General of army | oct |
| Colonel of regiment | oct |
| Confer |
|
Looks like a compound of 4 octahedra (oct), and indeed in type A vertices, edges coincide by 4, while {6/2} coincide by pairs, whereas in type B edges coincide by 4, vertices coincide by pairs, and triangles coincide by pairs with one {6/2} each.
Incidence matrix according to Dynkin symbol
x3/2x3β3*a (type A)
both( . . . ) | 24 | 1 1 1 1 | 1 1 1 1
-------------------+----+-------------+--------
both( x . . ) | 2 | 12 * * * | 1 1 0 0
both( . x . ) | 2 | * 12 * * | 1 0 1 0
sefa( x . β3*a ) | 2 | * * 12 * | 0 1 0 1
sefa( . x3β ) | 2 | * * * 12 | 0 0 1 1
-------------------+----+-------------+--------
both( x3/2x . ) | 6 | 3 3 0 0 | 4 * * *
x . β3*a ♦ 6 | 3 0 3 0 | * 4 * *
. x3β ♦ 6 | 0 3 0 3 | * * 4 *
sefa( x3/2x3β3*a ) | 6 | 0 0 3 3 | * * * 4
or
both( . . . ) | 24 | 2 2 | 1 2 1
----------------------+----+-------+------
both( x . . ) & | 2 | 24 * | 1 1 0
sefa( x . β3*a ) & | 2 | * 24 | 0 1 1
----------------------+----+-------+------
both( x3/2x . ) | 6 | 6 0 | 4 * *
x . β3*a & ♦ 6 | 3 3 | * 8 *
sefa( x3/2x3β3*a ) | 6 | 0 6 | * * 4
starting figure: x3/2x3x3*a
β3/2x3β3*a (type B)
demi( . . . ) | 12 | 2 4 2 | 1 2 2 3
-------------------+----+----------+---------
both( . x . ) | 2 | 12 * * | 1 0 1 0
sefa( s . s3*a ) | 2 | * 24 * | 0 1 0 1
sefa( . x3β ) | 2 | * * 12 | 0 0 1 1
-------------------+----+----------+---------
β3/2x . ♦ 3 | 3 0 0 | 4 * * *
both( s . s3*a ) ♦ 3 | 0 3 0 | * 8 * *
. x3β ♦ 6 | 3 0 3 | * * 4 *
sefa( β3/2x3β3*a ) | 3 | 0 2 1 | * * * 12
starting figure: x3/2x3x3*a
© 2004-2025 | top of page |