| Acronym | retut (alt.: amtut) |
| Name | rectified/ambified truncated tetrahedron |
| |
| Circumradius | sqrt(9/2) = 2.121320 |
| Face vector | 18, 36, 20 |
| Confer |
|
Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of tut as a pre-image these intersection points might differ on its 2 edge types. Therefore tut cannot be rectified (within this stronger sense). Nonetheless the Conway operator of ambification (chosing the former edge centers generally) clearly is applicable. This would result in 2 different edge sizes in the outcome polyhedron. That one here is scaled such so that the shorter one becomes unity. Then the larger edge will have size h=sqrt(3).
Incidence matrix according to Dynkin symbol
xox(do)-3-odd(od)-&#ht → height(1,2) = height(3,4) = sqrt(2/3) = 0.816497
height(2,3) = sqrt(8/3) = 1.632993
height(4,5) = 0
o..(..)-3-o..(..) | 3 * * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0 0
.o.(..)-3-.o.(..) | * 3 * * * | 0 2 2 0 0 0 0 | 0 1 2 1 0 0 0
..o(..)-3-..o(..) | * * 6 * * | 0 0 1 1 1 1 0 | 0 0 1 1 1 1 0
...(o.)-3-...(o.) | * * * 3 * | 0 0 0 0 2 0 2 | 0 0 1 0 2 0 1
...(.o)-3-...(.o) | * * * * 3 | 0 0 0 0 0 2 2 | 0 0 0 0 2 1 1
--------------------------+-----------+---------------+--------------
x..(..) ...(..) | 2 0 0 0 0 | 3 * * * * * * | 1 1 0 0 0 0 0 x
oo.(..)-3-oo.(..)-&#h | 1 1 0 0 0 | * 6 * * * * * | 0 1 1 0 0 0 0 h
.oo(..)-3-.oo(..)-&#h | 0 1 1 0 0 | * * 6 * * * * | 0 0 1 1 0 0 0 h
..x(..) ...(..) | 0 0 2 0 0 | * * * 3 * * * | 0 0 0 1 0 1 0 x
..o(o.)-3-..o(o.)-&#h | 0 0 1 1 0 | * * * * 6 * * | 0 0 1 0 1 0 0 h
..o(.o)-3-..o(.o)-&#x | 0 0 1 0 1 | * * * * * 6 * | 0 0 0 0 1 1 0 x
...(oo)-3-...(oo)-&#h | 0 0 0 1 1 | * * * * * * 6 | 0 0 0 0 1 0 1 h
--------------------------+-----------+---------------+--------------
x..(..)-3-o..(..) | 3 0 0 0 0 | 3 0 0 0 0 0 0 | 1 * * * * * * x-{3}
xo.(..) ...(..)-&#h | 2 1 0 0 0 | 1 2 0 0 0 0 0 | * 3 * * * * * xhh
...(..) odd(o.)-&#ht | 1 2 2 1 0 | 0 2 2 0 2 0 0 | * * 3 * * * * h-{6}
.ox(..) ...(..)-&#h | 0 1 2 0 0 | 0 0 2 1 0 0 0 | * * * 3 * * * xhh
..o(oo)-3-..o(oo)-&#(h,x) | 0 0 1 1 1 | 0 0 0 0 1 1 1 | * * * * 6 * * xhh
..x(.o) ...(..)-&#x | 0 0 2 0 1 | 0 0 0 1 0 2 0 | * * * * * 3 * x-{3}
...(do)-3-...(od)-&#zh | 0 0 0 3 3 | 0 0 0 0 0 0 6 | * * * * * * 1 h-{6}
xo3od3do&#zh → height = 0
(tegum sum of x3o3d and d-oct)
o.3o.3o. | 12 * | 2 2 | 1 2 1
.o3.o3.o | * 6 | 0 4 | 0 2 2
-------------+------+-------+-------
x. .. .. | 2 0 | 12 * | 1 1 0
oo3oo3oo&#h | 1 1 | * 24 | 0 1 1
-------------+------+-------+-------
x.3o. .. | 3 0 | 3 0 | 4 * * x-{3}
xo .. ..&#h | 2 1 | 1 2 | * 12 * xhh
.. od3do&#zh | 3 3 | 0 6 | * * 4 h-{6}
© 2004-2025 | top of page |