Acronym ... Name fooo3xxoF3xfxo *b3oxFo&#zx Confer uniform relative: ex   related CRFs: Fxxx3xxoF3xfxo *b3oxFo&#zx   general polytopal classes: expanded kaleido-facetings

The relation to ex runs as follows: ex in demitessic subsymmetry can be given as foxo3ooof3xfoo *b3oxfo&#zx. That will be transformed into fo(-x)o3ooxf3xfoo *b3oxfo&#zx (faceting, same vertex set). This in turn will be transformed into fooo3oo(-x)f3xfxo *b3oxFo&#zx (other faceting, still same vertex set). Then a Stott expansion wrt. the second nodes produces this polychoron.

Both of the non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2. Thus .... .... .fxo ....&#zx = ofx&#xt becomes a coplanar {5}. Further .... xxoF3xfxo ....&#zx = xfox3oxFx&#xt is thawro.

Incidence matrix according to Dynkin symbol

```fooo3xxoF3xfxo *b3oxFo&#zx   → all heights = 0 – except those of the not existing lacing(1,3) resp. lacing(3,4)

o...3o...3o... *b3o...     | 96  *  *  * |  2  1   2  1  0  0  0  0  0 |  2  1  2  1  1   2  0  0  0  0  0  0 | 1  1  1  2 0  0 0
.o..3.o..3.o.. *b3.o..     |  * 96  *  * |  0  0   2  0  2  1  1  1  0 |  0  0  2  2  0   2  1  2  2  1  1  0 | 0  2  2  2 1  1 0
..o.3..o.3..o. *b3..o.     |  *  * 32  * |  0  0   0  0  0  0  3  0  3 |  0  0  0  0  0   0  0  0  3  0  3  3 | 0  0  0  3 0  1 1
...o3...o3...o *b3...o     |  *  *  * 24 |  0  0   0  4  0  0  0  4  0 |  0  0  0  0  2   8  0  0  0  2  2  0 | 0  0  4  4 0  0 0
---------------------------+-------------+-----------------------------+--------------------------------------+------------------
.... x... ....    ....     |  2  0  0  0 | 96  *   *  *  *  *  *  *  * |  1  1  1  0  0   0  0  0  0  0  0  0 | 1  1  0  1 0  0 0
.... .... x...    ....     |  2  0  0  0 |  * 48   *  *  *  *  *  *  * |  2  0  0  0  1   0  0  0  0  0  0  0 | 1  0  0  2 0  0 0
oo..3oo..3oo.. *b3oo..&#x  |  1  1  0  0 |  *  * 192  *  *  *  *  *  * |  0  0  1  1  0   1  0  0  0  0  0  0 | 0  1  1  1 0  0 0
o..o3o..o3o..o *b3o..o&#x  |  1  0  0  1 |  *  *   * 96  *  *  *  *  * |  0  0  0  0  1   2  0  0  0  0  0  0 | 0  0  1  2 0  0 0
.... .x.. ....    ....     |  0  2  0  0 |  *  *   *  * 96  *  *  *  * |  0  0  1  0  0   0  1  1  1  0  0  0 | 0  1  0  1 1  1 0
.... .... ....    .x..     |  0  2  0  0 |  *  *   *  *  * 48  *  *  * |  0  0  0  2  0   0  0  2  0  1  0  0 | 0  2  2  0 1  0 0
.oo.3.oo.3.oo. *b3.oo.&#x  |  0  1  1  0 |  *  *   *  *  *  * 96  *  * |  0  0  0  0  0   0  0  0  2  0  1  0 | 0  0  0  2 0  1 0
.o.o3.o.o3.o.o *b3.o.o&#x  |  0  1  0  1 |  *  *   *  *  *  *  * 96  * |  0  0  0  0  0   2  0  0  0  1  1  0 | 0  0  2  2 0  0 0
.... .... ..x.    ....     |  0  0  2  0 |  *  *   *  *  *  *  *  * 48 |  0  0  0  0  0   0  0  0  0  0  1  2 | 0  0  0  2 0  0 1
---------------------------+-------------+-----------------------------+--------------------------------------+------------------
.... x...3x...    ....     |  6  0  0  0 |  3  3   0  0  0  0  0  0  0 | 32  *  *  *  *   *  *  *  *  *  *  * | 1  0  0  1 0  0 0
.... x... .... *b3o...     |  3  0  0  0 |  3  0   0  0  0  0  0  0  0 |  * 32  *  *  *   *  *  *  *  *  *  * | 1  1  0  0 0  0 0
.... xx.. ....    ....&#x  |  2  2  0  0 |  1  0   2  0  1  0  0  0  0 |  *  * 96  *  *   *  *  *  *  *  *  * | 0  1  0  1 0  0 0
.... .... ....    ox..&#x  |  1  2  0  0 |  0  0   2  0  0  1  0  0  0 |  *  *  * 96  *   *  *  *  *  *  *  * | 0  1  1  0 0  0 0
.... .... x..o    ....&#x  |  2  0  0  1 |  0  1   0  2  0  0  0  0  0 |  *  *  *  * 48   *  *  *  *  *  *  * | 0  0  0  2 0  0 0
oo.o3oo.o3oo.o *b3oo.o&#x  |  1  1  0  1 |  0  0   1  1  0  0  0  1  0 |  *  *  *  *  * 192  *  *  *  *  *  * | 0  0  1  1 0  0 0
.o..3.x.. ....    ....     |  0  3  0  0 |  0  0   0  0  3  0  0  0  0 |  *  *  *  *  *   * 32  *  *  *  *  * | 0  0  0  0 1  1 0
.... .x.. .... *b3.x..     |  0  6  0  0 |  0  0   0  0  3  3  0  0  0 |  *  *  *  *  *   *  * 32  *  *  *  * | 0  1  0  0 1  0 0
.... .xo. ....    ....&#x  |  0  2  1  0 |  0  0   0  0  1  0  2  0  0 |  *  *  *  *  *   *  *  * 96  *  *  * | 0  0  0  1 0  1 0
.... .... ....    .x.o&#x  |  0  2  0  1 |  0  0   0  0  0  1  0  2  0 |  *  *  *  *  *   *  *  *  * 48  *  * | 0  0  2  0 0  0 0
.... .... .fxo    ....&#zx |  0  2  2  1 |  0  0   0  0  0  0  2  2  1 |  *  *  *  *  *   *  *  *  *  * 48  * | 0  0  0  2 0  0 0
.... ..o.3..x.    ....     |  0  0  3  0 |  0  0   0  0  0  0  0  0  3 |  *  *  *  *  *   *  *  *  *  *  * 32 | 0  0  0  1 0  0 1
---------------------------+-------------+-----------------------------+--------------------------------------+------------------
.... x...3x... *b3o...     ♦ 12  0  0  0 | 12  6   0  0  0  0  0  0  0 |  4  4  0  0  0   0  0  0  0  0  0  0 | 8  *  *  * *  * *
.... xx.. .... *b3ox..&#x  ♦  3  6  0  0 |  3  0   6  0  3  3  0  0  0 |  0  1  3  3  0   0  0  1  0  0  0  0 | * 32  *  * *  * *
.... .... ....    ox.o&#x  ♦  1  2  0  1 |  0  0   2  1  0  1  0  2  0 |  0  0  0  1  0   2  0  0  0  1  0  0 | *  * 96  * *  * *
.... xxoF3xfxo    ....&#zx ♦  6  6  3  3 |  3  3   6  6  3  0  6  6  3 |  1  0  3  0  3   6  0  0  3  0  3  1 | *  *  * 32 *  * *
.o..3.x.. .... *b3.x..     ♦  0 12  0  0 |  0  0   0  0 12  6  0  0  0 |  0  0  0  0  0   0  4  4  0  0  0  0 | *  *  *  * 8  * *
.oo.3.xo. ....    ....&#x  ♦  0  3  1  0 |  0  0   0  0  3  0  3  0  0 |  0  0  0  0  0   0  1  0  3  0  0  0 | *  *  *  * * 32 *
..o.3..o.3..x.    ....     ♦  0  0  4  0 |  0  0   0  0  0  0  0  0  6 |  0  0  0  0  0   0  0  0  0  0  0  4 | *  *  *  * *  * 8
```