As abstract polytope gikkiv datapixady is isomorphic to skiv datapixady, thereby replacing pentagrams by pentagons and decagons by decagrams, resp. sidditdid by gidditdid, qrid by srid, and dip by stiddip. – As such gikkiv datapixady is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3o3x5x5/3*b

. . . .      | 7200 |    2    2    2 |    1    2    2    1    1    2 |   1   1   2   1
-------------+------+----------------+-------------------------------+----------------
x . . .      |    2 | 7200    *    * |    1    1    1    0    0    0 |   1   1   1   0
. . x .      |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . . x      |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
-------------+------+----------------+-------------------------------+----------------
x3o . .      |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
x . x .      |    4 |    2    2    0 |    * 3600    *    *    *    * |   1   0   1   0
x . . x      |    4 |    2    0    2 |    *    * 3600    *    *    * |   0   1   1   0
. o3x .      |    3 |    0    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. o . x5/3*b |    5 |    0    0    5 |    *    *    *    * 1440    * |   0   1   0   1
. . x5x      |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
-------------+------+----------------+-------------------------------+----------------
x3o3x .      ♦   12 |   12   12    0 |    4    6    0    4    0    0 | 600   *   *   *
x3o . x5/3*b ♦   60 |   60    0   60 |   20    0   30    0   12    0 |   * 120   *   *
x . x5x      ♦   20 |   10   10   10 |    0    5    5    0    0    2 |   *   * 720   *
. o3x5x5/3*b ♦   60 |    0   60   60 |    0    0    0   20   12   12 |   *   *   * 120
```

```x3/2o3/2x5x5/2*b

.   .   . .      | 7200 |    2    2    2 |    1    2    2    1    1    2 |   1   1   2   1
-----------------+------+----------------+-------------------------------+----------------
x   .   . .      |    2 | 7200    *    * |    1    1    1    0    0    0 |   1   1   1   0
.   .   x .      |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   .   . x      |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
-----------------+------+----------------+-------------------------------+----------------
x3/2o   . .      |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
x   .   x .      |    4 |    2    2    0 |    * 3600    *    *    *    * |   1   0   1   0
x   .   . x      |    4 |    2    0    2 |    *    * 3600    *    *    * |   0   1   1   0
.   o3/2x .      |    3 |    0    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   o   . x5/2*b |    5 |    0    0    5 |    *    *    *    * 1440    * |   0   1   0   1
.   .   x5x      |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
-----------------+------+----------------+-------------------------------+----------------
x3/2o3/2x .      ♦   12 |   12   12    0 |    4    6    0    4    0    0 | 600   *   *   *
x3/2o   . x5/2*b ♦   60 |   60    0   60 |   20    0   30    0   12    0 |   * 120   *   *
x   .   x5x      ♦   20 |   10   10   10 |    0    5    5    0    0    2 |   *   * 720   *
.   o3/2x5x5/2*b ♦   60 |    0   60   60 |    0    0    0   20   12   12 |   *   *   * 120
```