| Acronym | gippit | 
| Name | great prismated triacontiditeron, omnitruncated hemipenteract | 
| Field of sections | 
 | 
| Circumradius | sqrt(15) = 3.872983 | 
| Inradius wrt. shiddip | sqrt(27/2) = 3.674235 | 
| Inradius wrt. tope | 7/2 = 3.5 | 
| Inradius wrt. gippid | sqrt(10) = 3.162278 | 
| Inradius wrt. tico | sqrt(8) = 2.828427 | 
| Vertex figure | 
 | 
| Coordinates | (4, 3, 2, 1, 0)/sqrt(2) & all permutations, all changes of sign | 
| Face vector | 1920, 4800, 4160, 1440, 162 | 
| Confer | 
 | 
| External links |       | 
Incidence matrix according to Dynkin symbol
x3x3x3x4o . . . . . | 1920 | 1 1 1 2 | 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+------------ x . . . . | 2 | 960 * * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x . . | 2 | * * 960 * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 480 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 320 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 960 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x4o | 4 | 0 0 0 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 ----------+------+------------------+-----------------------------+---------------------------+------------ x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 | 80 * * * * * * | 2 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 | * 320 * * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . . x4o ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 0 | * * * * 160 * * | 1 0 0 1 . x . x4o ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 2 | * * * * * 240 * | 0 1 0 1 . . x3x4o ♦ 24 | 0 0 12 24 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 ----------+------+------------------+-----------------------------+---------------------------+------------ x3x3x3x . ♦ 120 | 60 60 60 60 | 20 30 30 20 30 20 0 | 5 10 10 0 5 0 0 | 32 * * * x3x . x4o ♦ 24 | 12 12 0 24 | 4 0 12 0 12 0 6 | 0 4 0 3 0 3 0 | * 80 * * x . x3x4o ♦ 48 | 24 0 24 48 | 0 12 24 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . x3x3x4o ♦ 192 | 0 96 96 192 | 0 0 0 32 96 64 48 | 0 0 0 0 16 24 8 | * * * 10 snubbed forms: s3s3s3s4o
x3x3x3x4/3o . . . . . | 1920 | 1 1 1 2 | 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ------------+------+------------------+-----------------------------+---------------------------+------------ x . . . . | 2 | 960 * * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x . . | 2 | * * 960 * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * * 1920 | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ------------+------+------------------+-----------------------------+---------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 480 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 960 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 320 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 960 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 640 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x4/3o | 4 | 0 0 0 4 | * * * * * * 480 | 0 0 0 1 0 1 1 | 0 1 1 1 ------------+------+------------------+-----------------------------+---------------------------+------------ x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 | 80 * * * * * * | 2 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 | * 320 * * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 | * * 320 * * * * | 1 0 1 0 x . . x4/3o ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 2 | * * * 240 * * * | 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 0 | * * * * 160 * * | 1 0 0 1 . x . x4/3o ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 2 | * * * * * 240 * | 0 1 0 1 . . x3x4/3o ♦ 24 | 0 0 12 24 | 0 0 0 0 0 8 6 | * * * * * * 80 | 0 0 1 1 ------------+------+------------------+-----------------------------+---------------------------+------------ x3x3x3x . ♦ 120 | 60 60 60 60 | 20 30 30 20 30 20 0 | 5 10 10 0 5 0 0 | 32 * * * x3x . x4/3o ♦ 24 | 12 12 0 24 | 4 0 12 0 12 0 6 | 0 4 0 3 0 3 0 | * 80 * * x . x3x4/3o ♦ 48 | 24 0 24 48 | 0 12 24 0 0 16 12 | 0 0 8 6 0 0 2 | * * 40 * . x3x3x4/3o ♦ 192 | 0 96 96 192 | 0 0 0 32 96 64 48 | 0 0 0 0 16 24 8 | * * * 10
   x           
  3 \          
     x---x---x 
  3 /  3   3   
   x           
x3x3x *b3x3x . . . . . | 1920 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 -------------+------+---------------------+-----------------------------------------+-------------------------------------+--------------- x . . . . | 2 | 960 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 960 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 960 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 960 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 960 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 -------------+------+---------------------+-----------------------------------------+-------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 0 | 320 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 480 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 480 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 480 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 320 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . *b3x . | 6 | 0 3 0 3 0 | * * * * * 320 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 480 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x x . | 4 | 0 0 2 2 0 | * * * * * * * 480 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x3x | 6 | 0 0 0 3 3 | * * * * * * * * * 320 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -------------+------+---------------------+-----------------------------------------+-------------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 80 * * * * * * * * * | 1 1 0 0 0 x3x . *b3x . ♦ 24 | 12 12 0 12 0 | 4 0 6 0 0 4 0 0 0 0 | * 80 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 160 * * * * * * * | 0 1 1 0 0 x . x x . ♦ 8 | 4 0 4 4 0 | 0 2 2 0 0 0 0 2 0 0 | * * * 240 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x3x ♦ 12 | 6 0 0 6 6 | 0 0 3 3 0 0 0 0 0 2 | * * * * * 160 * * * * | 0 0 1 1 0 . x3x *b3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 4 0 6 0 0 | * * * * * * 80 * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 0 6 | 0 0 0 0 2 0 3 0 3 0 | * * * * * * * 160 * * | 0 1 0 0 1 . x . *b3x3x ♦ 24 | 0 12 0 12 12 | 0 0 0 0 0 4 6 0 0 4 | * * * * * * * * 80 * | 0 0 1 0 1 . . x x3x ♦ 12 | 0 0 6 6 6 | 0 0 0 0 0 0 0 3 3 2 | * * * * * * * * * 160 | 0 0 0 1 1 -------------+------+---------------------+-----------------------------------------+-------------------------------------+--------------- x3x3x *b3x . ♦ 192 | 96 96 96 96 0 | 32 48 48 0 32 32 0 48 0 0 | 8 8 0 24 0 0 8 0 0 0 | 10 * * * * x3x3x . x ♦ 48 | 24 24 24 0 24 | 8 12 0 12 8 0 12 0 12 0 | 2 0 4 0 6 0 0 4 0 0 | * 40 * * * x3x . *b3x3x ♦ 120 | 60 60 0 60 60 | 20 0 30 30 0 20 30 0 0 20 | 0 5 10 0 0 10 0 0 5 0 | * * 16 * * x . x x3x ♦ 24 | 12 0 12 12 12 | 0 6 6 6 0 0 0 6 6 4 | 0 0 0 3 3 2 0 0 0 2 | * * * 80 * . x3x *b3x3x ♦ 120 | 0 60 60 60 60 | 0 0 0 0 20 20 30 30 30 20 | 0 0 0 0 0 0 5 10 5 10 | * * * * 16 snubbed forms: s3s3s *b3s3s
x3x3x3x4s
demi( . . . . . ) | 1920 |   1   1   1   1   1 |   1   1   1   1   1   1   1   1   1   1 |  1   1   1  1   1   1  1   1   1  1 |  1  1  1  1  1
------------------+------+---------------------+-----------------------------------------+-------------------------------------+---------------
demi( x . . . . ) |    2 | 960   *   *   *   * |   1   1   1   0   0   0   0   1   0   0 |  1   1   1  0   1   0  0   1   1  0 |  1  1  1  0  1
demi( . x . . . ) |    2 |   * 960   *   *   * |   1   0   0   1   1   0   0   0   1   0 |  1   1   0  1   0   1  0   1   0  1 |  1  1  0  1  1
demi( . . x . . ) |    2 |   *   * 960   *   * |   0   1   0   1   0   1   0   0   0   1 |  1   0   1  1   0   0  1   0   1  1 |  1  0  1  1  1
demi( . . . x . ) |    2 |   *   *   * 960   * |   0   0   1   0   1   1   1   0   0   0 |  0   1   1  1   1   1  1   0   0  0 |  1  1  1  1  0
sefa( . . . x4s ) |    2 |   *   *   *   * 960 |   0   0   0   0   0   0   1   1   1   1 |  0   0   0  0   1   1  1   1   1  1 |  0  1  1  1  1
------------------+------+---------------------+-----------------------------------------+-------------------------------------+---------------
demi( x3x . . . ) |    6 |   3   3   0   0   0 | 320   *   *   *   *   *   *   *   *   * |  1   1   0  0   0   0  0   1   0  0 |  1  1  0  0  1
demi( x . x . . ) |    4 |   2   0   2   0   0 |   * 480   *   *   *   *   *   *   *   * |  1   0   1  0   0   0  0   0   1  0 |  1  0  1  0  1
demi( x . . x . ) |    4 |   2   0   0   2   0 |   *   * 480   *   *   *   *   *   *   * |  0   1   1  0   1   0  0   0   0  0 |  1  1  1  0  0
demi( . x3x . . ) |    6 |   0   3   3   0   0 |   *   *   * 320   *   *   *   *   *   * |  1   0   0  1   0   0  0   0   0  1 |  1  0  0  1  1
demi( . x . x . ) |    4 |   0   2   0   2   0 |   *   *   *   * 480   *   *   *   *   * |  0   1   0  1   0   1  0   0   0  0 |  1  1  0  1  0
demi( . . x3x . ) |    6 |   0   0   3   3   0 |   *   *   *   *   * 320   *   *   *   * |  0   0   1  1   0   0  1   0   0  0 |  1  0  1  1  0
      . . . x4s   |    4 |   0   0   0   2   2 |   *   *   *   *   *   * 480   *   *   * |  0   0   0  0   1   1  1   0   0  0 |  0  1  1  1  0
sefa( x 2 . x4s ) |    4 |   2   0   0   0   2 |   *   *   *   *   *   *   * 480   *   * |  0   0   0  0   1   0  0   1   1  0 |  0  1  1  0  1
sefa( . x 2 x4s ) |    4 |   0   2   0   0   2 |   *   *   *   *   *   *   *   * 480   * |  0   0   0  0   0   1  0   1   0  1 |  0  1  0  1  1
sefa( . . x3x4s ) |    6 |   0   0   3   0   3 |   *   *   *   *   *   *   *   *   * 320 |  0   0   0  0   0   0  1   0   1  1 |  0  0  1  1  1
------------------+------+---------------------+-----------------------------------------+-------------------------------------+---------------
demi( x3x3x . . ) ♦   24 |  12  12  12   0   0 |   4   6   0   4   0   0   0   0   0   0 | 80   *   *  *   *   *  *   *   *  * |  1  0  0  0  1
demi( x3x . x . ) ♦   12 |   6   6   0   6   0 |   2   0   3   0   3   0   0   0   0   0 |  * 160   *  *   *   *  *   *   *  * |  1  1  0  0  0
demi( x . x3x . ) ♦   12 |   6   0   6   6   0 |   0   3   3   0   0   2   0   0   0   0 |  *   * 160  *   *   *  *   *   *  * |  1  0  1  0  0
demi( . x3x3x . ) ♦   24 |   0  12  12  12   0 |   0   0   0   4   6   4   0   0   0   0 |  *   *   * 80   *   *  *   *   *  * |  1  0  0  1  0
      x 2 . x4s   ♦    8 |   4   0   0   4   4 |   0   0   2   0   0   0   2   2   0   0 |  *   *   *  * 240   *  *   *   *  * |  0  1  1  0  0
      . x 2 x4s   ♦    8 |   0   4   0   4   4 |   0   0   0   0   2   0   2   0   2   0 |  *   *   *  *   * 240  *   *   *  * |  0  1  0  1  0
      . . x3x4s   ♦   24 |   0   0  12  12  12 |   0   0   0   0   0   4   6   0   0   4 |  *   *   *  *   *   * 80   *   *  * |  0  0  1  1  0
sefa( x3x 2 x4s ) ♦   12 |   6   6   0   0   6 |   2   0   0   0   0   0   0   3   3   0 |  *   *   *  *   *   *  * 160   *  * |  0  1  0  0  1
sefa( x 2 x3x4s ) ♦   12 |   6   0   6   0   6 |   0   3   0   0   0   0   0   3   0   2 |  *   *   *  *   *   *  *   * 160  * |  0  0  1  0  1
sefa( . x3x3x4s ) ♦   24 |   0  12  12   0  12 |   0   0   0   4   0   0   0   0   6   4 |  *   *   *  *   *   *  *   *   * 80 |  0  0  0  1  1
------------------+------+---------------------+-----------------------------------------+-------------------------------------+---------------
demi( x3x3x3x . ) ♦  120 |  60  60  60  60   0 |  20  30  30  20  30  20   0   0   0   0 |  5  10  10  5   0   0  0   0   0  0 | 16  *  *  *  *
      x3x 2 x4s   ♦   24 |  12  12   0  12  12 |   4   0   6   0   6   0   6   6   6   0 |  0   2   0  0   3   3  0   2   0  0 |  * 80  *  *  *
      x 2 x3x4s   ♦   48 |  24   0  24  24  24 |   0  12  12   0   0   8  12  12   0   8 |  0   0   4  0   6   0  2   0   4  0 |  *  * 40  *  *
      . x3x3x4s   ♦  192 |   0  96  96  96  96 |   0   0   0  32  48  32  48   0  48  32 |  0   0   0  8   0  24  8   0   0  8 |  *  *  * 10  *
sefa( x3x3x3x4s ) ♦  120 |  60  60  60   0  60 |  20  30   0  20   0   0   0  30  30  20 |  5   0   0  0   0   0  0  10  10  5 |  *  *  *  * 16
starting figure: x3x3x3x4x
| © 2004-2025 | top of page |