Acronym ...
Name hyperbolic lamina-truncate of x3o4x8o tesselation
Circumradius 1/sqrt[-sqrt(2)] = 0.840896 i
Vertex figure xqx oko&#qt
Confer x3o4x8o  

This compact hyperbolic tesselation is obtained by mirroring the remainder of the hypercompact x3o4x8o on its bollohedra (teoct), which have exactly the same curvature as the whole honeycomb.


Incidence matrix according to Dynkin symbol

lamina-trunc( x3o4x8o )   (N,M → ∞)

12N |   4   4 |  2   8  2  2 |  4  4
----+---------+--------------+------
  2 | 24N   * |  1   2  0  0 |  2  1
  2 |   * 24N |  0   2  1  1 |  2  2
----+---------+--------------+------
  3 |   3   0 | 8N   *  *  * |  2  0
  4 |   2   2 |  * 24N  *  * |  1  1
  4 |   0   4 |  *   * 6N  * |  2  0
  8 |   0   8 |  *   *  * 3N |  0  2
----+---------+--------------+------
 24 |  24  24 |  8  12  6  0 | 2N  *  sirco
 16 |   8  16 |  0   8  0  2 |  * 3N  op

© 2004-2026
top of page