| Acronym | ogdow |
| Name |
octagrammic disphenoid, octagrammic duopyramid, octagram atop fully orthogonal octagram |
| Circumradius | sqrt[3-sqrt(2)]/2 = 0.629640 |
| Dual | (selfdual) |
| Face vector | 16, 80, 130, 80, 16 |
| Confer |
|
Incidence matrix according to Dynkin symbol
xo8/3oo ox8/3oo&#x → height = sqrt[sqrt(2)-1] = 0.643594
(pyramid product of 2 octagrams)
o.8/3o. o.8/3o. & | 16 ♦ 2 8 | 1 24 | 9 16 | 10
---------------------+----+-------+-------+-------+---
x. .. .. .. & | 2 | 16 * ♦ 1 8 | 8 8 | 9
oo8/3oo oo8/3oo&#x | 2 | * 64 | 0 4 | 2 4 | 4
---------------------+----+-------+-------+-------+---
x.8/3o. .. .. & | 8 | 8 0 | 2 * | 8 0 | 8 {8/3}
xo .. .. ..&#x & | 3 | 1 2 | * 128 | 1 2 | 3
---------------------+----+-------+-------+-------+---
xo8/3oo .. ..&#x & ♦ 9 | 8 8 | 1 8 | 16 * | 2
xo .. ox ..&#x ♦ 4 | 2 4 | 0 4 | * 64 | 2
---------------------+----+-------+-------+-------+---
xo8/3oo ox ..&#x & ♦ 10 | 9 16 | 1 24 | 2 8 | 16
xo4/3xo ox4/3ox&#x → height = sqrt[sqrt(2)-1] = 0.643594
(pyramid product of 2 octagrams)
o.4/3o. o.4/3o. | 8 * ♦ 1 1 8 0 0 | 1 8 8 4 4 0 | 8 4 4 4 4 1 | 4 4 1 1
.o4/3.o .o4/3.o | * 8 ♦ 0 0 8 1 1 | 0 4 4 8 8 1 | 1 4 4 4 4 8 | 1 1 4 4
-------------------+-----+------------+-----------------+-----------------+--------
x. .. .. .. | 2 0 | 4 * * * * ♦ 1 8 0 0 0 0 | 8 4 4 0 0 0 | 4 4 1 0
.. x. .. .. | 2 0 | * 4 * * * ♦ 1 0 8 0 0 0 | 8 0 0 4 4 0 | 4 4 0 1
oo4/3oo oo4/3oo&#x | 1 1 | * * 64 * * | 0 1 1 1 1 0 | 1 1 1 1 1 1 | 1 1 1 1
.. .. .x .. | 0 2 | * * * 4 * ♦ 0 0 0 8 0 1 | 0 4 0 4 0 8 | 1 0 4 4
.. .. .. .x | 0 2 | * * * * 4 ♦ 0 0 0 0 8 1 | 0 0 4 0 4 8 | 0 1 4 4
-------------------+-----+------------+-----------------+-----------------+--------
x.4/3x. .. .. | 8 0 | 4 4 0 0 0 | 1 * * * * * | 8 0 0 0 0 0 | 4 4 0 0 {8/3}
xo .. .. ..&#x | 2 1 | 1 0 2 0 0 | * 32 * * * * | 1 1 1 0 0 0 | 1 1 1 0
.. xo .. ..&#x | 2 1 | 0 1 2 0 0 | * * 32 * * * | 1 0 0 1 1 0 | 1 1 0 1
.. .. ox ..&#x | 1 2 | 0 0 2 1 0 | * * * 32 * * | 0 1 0 1 0 1 | 1 0 1 1
.. .. .. ox&#x | 1 2 | 0 0 2 0 1 | * * * * 32 * | 0 0 1 0 1 1 | 0 1 1 1
.. .. .x4/3.x | 0 8 | 0 0 0 4 4 | * * * * * 1 | 0 0 0 0 0 8 | 0 0 4 4 {8/3}
-------------------+-----+------------+-----------------+-----------------+--------
xo4/3xo .. ..&#x ♦ 8 1 | 4 4 8 0 0 | 1 4 4 0 0 0 | 8 * * * * * | 1 1 0 0
xo .. ox ..&#x ♦ 2 2 | 1 0 4 1 0 | 0 2 0 2 0 0 | * 16 * * * * | 1 0 1 0
xo .. .. ox&#x ♦ 2 2 | 1 0 4 0 1 | 0 2 0 0 2 0 | * * 16 * * * | 0 1 1 0
.. xo ox ..&#x ♦ 2 2 | 0 1 4 1 0 | 0 0 2 2 0 0 | * * * 16 * * | 1 0 0 1
.. xo .. ox&#x ♦ 2 2 | 0 1 4 0 1 | 0 0 2 0 2 0 | * * * * 16 * | 0 1 0 1
.. .. ox4/3ox&#x ♦ 1 8 | 0 0 8 4 4 | 0 0 0 4 4 1 | * * * * * 8 | 0 0 1 1
-------------------+-----+------------+-----------------+-----------------+--------
xo4/3xo ox ..&#x ♦ 8 2 | 4 4 16 1 0 | 1 8 8 8 0 0 | 2 4 0 4 0 0 | 4 * * *
xo4/3xo .. ox&#x ♦ 8 2 | 4 4 16 0 1 | 1 8 8 0 8 0 | 2 0 4 0 4 0 | * 4 * *
xo .. ox4/3ox&#x ♦ 2 8 | 1 0 16 4 4 | 0 8 0 8 8 1 | 0 4 4 0 0 2 | * * 4 *
.. xo ox4/3ox&#x ♦ 2 8 | 0 1 16 4 4 | 0 0 8 8 8 1 | 0 0 0 4 4 2 | * * * 4
© 2004-2025 | top of page |