Acronym rafficdi Name retrofrustic tetracontoctadisicositetrachoron Cross sections ` ©` Circumradius sqrt(2) = 1.414214 Coordinates ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2)   & all permutations, all changes of sign General of army cont Colonel of regiment afdec Externallinks

As abstract polytope rafficdi is automorph, thereby interchanging the roles of sirco and querco.

Incidence matrix according to Dynkin symbol

```x3o4/3x3o4*a

. .   . .    | 288 |   4   4 |   2   4   2   2   2 |  2  1  2  1
-------------+-----+---------+---------------------+------------
x .   . .    |   2 | 576   * |   1   1   1   0   0 |  1  1  1  0
. .   x .    |   2 |   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+---------+---------------------+------------
x3o   . .    |   3 |   3   0 | 192   *   *   *   * |  1  1  0  0
x .   x .    |   4 |   2   2 |   * 288   *   *   * |  1  0  1  0
x .   . o4*a |   4 |   4   0 |   *   * 144   *   * |  0  1  1  0
. o4/3x .    |   4 |   0   4 |   *   *   * 144   * |  1  0  0  1
. .   x3o    |   3 |   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+---------+---------------------+------------
x3o4/3x .    ♦  24 |  24  24 |   8  12   0   6   0 | 24  *  *  *
x3o   . o4*a ♦  12 |  24   0 |   8   0   6   0   0 |  * 24  *  *
x .   x3o4*a ♦  24 |  24  24 |   0  12   6   0   8 |  *  * 24  *
. o4/3x3o    ♦  12 |   0  24 |   0   0   0   6   8 |  *  *  * 24
```

```x3o4/3x3/2o4/3*a

. .   .   .      | 288 |   4   4 |   2   4   2   2   2 |  2  1  2  1
-----------------+-----+---------+---------------------+------------
x .   .   .      |   2 | 576   * |   1   1   1   0   0 |  1  1  1  0
. .   x   .      |   2 |   * 576 |   0   1   0   1   1 |  1  0  1  1
-----------------+-----+---------+---------------------+------------
x3o   .   .      |   3 |   3   0 | 192   *   *   *   * |  1  1  0  0
x .   x   .      |   4 |   2   2 |   * 288   *   *   * |  1  0  1  0
x .   .   o4/3*a |   4 |   4   0 |   *   * 144   *   * |  0  1  1  0
. o4/3x   .      |   4 |   0   4 |   *   *   * 144   * |  1  0  0  1
. .   x3/2o      |   3 |   0   3 |   *   *   *   * 192 |  0  0  1  1
-----------------+-----+---------+---------------------+------------
x3o4/3x   .      ♦  24 |  24  24 |   8  12   0   6   0 | 24  *  *  *
x3o   .   o4/3*a ♦  12 |  24   0 |   8   0   6   0   0 |  * 24  *  *
x .   x3/2o4/3*a ♦  24 |  24  24 |   0  12   6   0   8 |  *  * 24  *
. o4/3x3/2o      ♦  12 |   0  24 |   0   0   0   6   8 |  *  *  * 24
```

```x3/2o4x3o4*a

.   . . .    | 288 |   4   4 |   2   4   2   2   2 |  2  1  2  1
-------------+-----+---------+---------------------+------------
x   . . .    |   2 | 576   * |   1   1   1   0   0 |  1  1  1  0
.   . x .    |   2 |   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+---------+---------------------+------------
x3/2o . .    |   3 |   3   0 | 192   *   *   *   * |  1  1  0  0
x   . x .    |   4 |   2   2 |   * 288   *   *   * |  1  0  1  0
x   . . o4*a |   4 |   4   0 |   *   * 144   *   * |  0  1  1  0
.   o4x .    |   4 |   0   4 |   *   *   * 144   * |  1  0  0  1
.   . x3o    |   3 |   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+---------+---------------------+------------
x3/2o4x .    ♦  24 |  24  24 |   8  12   0   6   0 | 24  *  *  *
x3/2o . o4*a ♦  12 |  24   0 |   8   0   6   0   0 |  * 24  *  *
x   . x3o4*a ♦  24 |  24  24 |   0  12   6   0   8 |  *  * 24  *
.   o4x3o    ♦  12 |   0  24 |   0   0   0   6   8 |  *  *  * 24
```

```x3/2o4x3/2o4/3*a

.   . .   .      | 288 |   4   4 |   2   4   2   2   2 |  2  1  2  1
-----------------+-----+---------+---------------------+------------
x   . .   .      |   2 | 576   * |   1   1   1   0   0 |  1  1  1  0
.   . x   .      |   2 |   * 576 |   0   1   0   1   1 |  1  0  1  1
-----------------+-----+---------+---------------------+------------
x3/2o .   .      |   3 |   3   0 | 192   *   *   *   * |  1  1  0  0
x   . x   .      |   4 |   2   2 |   * 288   *   *   * |  1  0  1  0
x   . .   o4/3*a |   4 |   4   0 |   *   * 144   *   * |  0  1  1  0
.   o4x   .      |   4 |   0   4 |   *   *   * 144   * |  1  0  0  1
.   . x3/2o      |   3 |   0   3 |   *   *   *   * 192 |  0  0  1  1
-----------------+-----+---------+---------------------+------------
x3/2o4x   .      ♦  24 |  24  24 |   8  12   0   6   0 | 24  *  *  *
x3/2o .   o4/3*a ♦  12 |  24   0 |   8   0   6   0   0 |  * 24  *  *
x   . x3/2o4/3*a ♦  24 |  24  24 |   0  12   6   0   8 |  *  * 24  *
.   o4x3/2o      ♦  12 |   0  24 |   0   0   0   6   8 |  *  *  * 24
```