Acronym resrip (alt.: amsrip)
Name rectified/ambified srip
Circumradius sqrt(23/5) = 2.144761
Face vector 90, 270, 230, 50
Confer
ambification pre-image:
srip  

Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of srip as a pre-image these intersection points might differ on its 2 edge types. Therefore srip cannot be rectified (within this stronger sense). Nonetheless the Conway operator of ambification (chosing the former edge centers generally) clearly is applicable. This would result in 2 different edge sizes in the outcome polychoron. That one here is scaled such so that the smaller one becomes unity. Then the longer edge will have size q = sqrt(2).

The non-polar triangles {(t,T,T)} have vertex angles t = arccos(3/4) = 41.409622° resp. T = arccos[1/sqrt(8)] = 69.295189°.

All u = 2 edges, used in the below descriptions, only qualify as pseudo edges wrt. the full polychoron.


Incidence matrix according to Dynkin symbol

((xo3ou3xx3uo))&#zq   → height = 0

  o.3o.3o.3o.       | 60  * |  2  2   2  0 |  1  2  1  2  1  2  0 | 1  1  2 1
  .o3.o3.o3.o       |  * 30 |  0  0   4  2 |  0  0  0  2  2  4  1 | 0  1  2 2
--------------------+-------+--------------+----------------------+----------
  x. .. .. ..       |  2  0 | 60  *   *  * |  1  1  0  1  0  0  0 | 1  1  1 0
  .. .. x. ..       |  2  0 |  * 60   *  * |  0  1  1  0  0  1  0 | 1  0  1 1
  oo3oo3oo3oo  &#q  |  1  1 |  *  * 120  * |  0  0  0  1  1  1  0 | 0  1  1 1
  .. .. .x ..       |  0  2 |  *  *   * 30 |  0  0  0  0  0  2  1 | 0  0  1 2
--------------------+-------+--------------+----------------------+----------
  x.3o. .. ..       |  3  0 |  3  0   0  0 | 20  *  *  *  *  *  * | 1  1  0 0
  x. .. x. ..       |  4  0 |  2  2   0  0 |  * 30  *  *  *  *  * | 1  0  1 0
  .. o.3x. ..       |  3  0 |  0  3   0  0 |  *  * 20  *  *  *  * | 1  0  0 1
  xo .. .. ..  &#q  |  2  1 |  1  0   2  0 |  *  *  * 60  *  *  * | 0  1  1 0
((.. ou .. uo))&#zq |  2  2 |  0  0   4  0 |  *  *  *  * 30  *  * | 0  1  0 1
  .. .. xx ..  &#q  |  2  2 |  0  1   2  1 |  *  *  *  *  * 60  * | 0  0  1 1
  .. .. .x3.o       |  0  3 |  0  0   0  3 |  *  *  *  *  *  * 10 | 0  0  0 2
--------------------+-------+--------------+----------------------+----------
  x.3o.3x. ..        12  0 | 12 12   0  0 |  4  6  4  0  0  0  0 | 5  *  * *
((xo3ou .. uo))&#zq   6  3 |  6  0  12  0 |  2  0  0  6  3  0  0 | * 10  * *
  xo .. xx ..  &#q    4  2 |  2  2   4  1 |  0  1  0  2  0  2  0 | *  * 30 *
((.. ou3xx3uo))&#zq  12 12 |  0 12  24 12 |  0  0  4  0  6 12  4 | *  *  * 5

© 2004-2026
top of page