Acronym pikap (alt.: snittap)
Name pyritohedral icosahedral antiprism,
snub-tetrahedral antiprism,
non-uniform alternation of tope
 
 ©
Circumradius ...
Confer
general polytopal classes:
isogonal  
External
links
wikipedia   polytopewiki

No uniform realisation is possible, as can be seen from the vertex figure.

The OBSA pikap refers to the pyritohedral icosahedral antiprism s2s3s4o, while snittap refers to the snub-tetrahedral antiprism s2s3s3s, i.e. the subsymmetrical variant of the former.


Incidence matrix according to Dynkin symbol

s2s3s3s

demi( . . . . ) | 24 |  1  1  1  1  2  2 | 1 1  3  3  3  3 | 1 1 1 1  4
----------------+----+-------------------+-----------------+-----------
      s2s . .   |  2 | 12  *  *  *  *  * | 0 0  2  2  0  0 | 1 1 0 0  2  q
      s 2 s .   |  2 |  * 12  *  *  *  * | 0 0  2  0  2  0 | 1 0 1 0  2  q
      s  2  s   |  2 |  *  * 12  *  *  * | 0 0  0  2  2  0 | 0 1 1 0  2  q
      . s 2 s   |  2 |  *  *  * 12  *  * | 0 0  0  2  0  2 | 0 1 0 1  2  q
sefa( . s3s . ) |  2 |  *  *  *  * 24  * | 1 0  1  0  0  1 | 1 0 0 1  1  h
sefa( . . s3s ) |  2 |  *  *  *  *  * 24 | 0 1  0  0  1  1 | 0 0 1 1  1  h
----------------+----+-------------------+-----------------+-----------
      . s3s .     3 |  0  0  0  0  3  0 | 8 *  *  *  *  * | 1 0 0 1  0  h-{3}
      . . s3s     4 |  0  0  0  0  0  4 | * 8  *  *  *  * | 0 0 1 1  0  h-{3}
sefa( s2s3s . ) |  3 |  1  1  0  0  1  0 | * * 24  *  *  * | 1 0 0 0  1  oh&#q
sefa( s2s 2 s ) |  3 |  1  0  1  1  0  0 | * *  * 24  *  * | 0 1 0 0  1  q-{3}
sefa( s 2 s3s ) |  3 |  0  1  1  0  0  1 | * *  *  * 24  * | 0 0 1 0  1  oh&#q
sefa( . s3s3s ) |  3 |  0  0  0  1  1  1 | * *  *  *  * 24 | 0 0 0 1  1  oq&#h
----------------+----+-------------------+-----------------+-----------
      s2s3s .     6 |  3  3  0  0  6  0 | 2 0  6  0  0  0 | 4 * * *  *
      s2s 2 s     4 |  2  0  2  2  0  0 | 0 0  0  4  0  0 | * 6 * *  *
      s 2 s3s     6 |  0  3  3  0  0  6 | 0 2  0  0  6  0 | * * 4 *  *
      . s3s3s    12 |  0  0  0  6 12 12 | 4 4  0  0  0 12 | * * * 2  *
sefa( s2s3s3s )   4 |  1  1  1  1  1  1 | 0 0  1  1  1  1 | * * * * 24

starting figure: x x3x3x

s2s3s4o

demi( . . . . ) | 24 |  1  2  1  4 |  2  6  3  3 | 2 1 1  4
----------------+----+-------------+-------------+---------
      s2s . .   |  2 | 12  *  *  * |  0  4  0  0 | 2 0 0  2  q
      s 2 s .   |  2 |  * 24  *  * |  0  2  2  0 | 1 1 0  2  q
      . . s4o   |  2 |  *  * 12  * |  0  0  2  2 | 0 1 1  2  q
sefa( . s3s . ) |  2 |  *  *  * 48 |  1  1  0  1 | 1 0 1  1  h
----------------+----+-------------+-------------+---------
      . s3s .     3 |  0  0  0  3 | 16  *  *  * | 1 0 1  0  h-{3}
sefa( s2s3s . ) |  3 |  1  1  0  1 |  * 48  *  * | 1 0 0  1  oh&#q
sefa( s 2 s4o ) |  3 |  0  2  1  0 |  *  * 24  * | 0 1 0  1  q-{3}
sefa( . s3s4o ) |  3 |  0  0  1  2 |  *  *  * 24 | 0 0 1  1  oq&#h
----------------+----+-------------+-------------+---------
      s2s3s .     6 |  3  3  0  6 |  2  6  0  0 | 8 * *  *
      s 2 s4o     4 |  0  4  2  0 |  0  0  4  0 | * 6 *  *
      . s3s4o    12 |  0  0  6 24 |  8  0  0 12 | * * 2  *
sefa( s2s3s4o )   4 |  1  2  1  2 |  0  2  1  1 | * * * 24

starting figure: x x3x4o

© 2004-2021
top of page