Acronym sniccap
Name s2s3s4s,
snub-cubic antiprism,
non-uniform alternation of gircope
Circumradius ...
Confer
general polytopal classes:
isogonal  
External
links
wikipedia   polytopewiki

No uniform realisation is possible, as can be seen from the vertex figure.


Incidence matrix according to Dynkin symbol

s2s3s4s

demi( . . . . ) | 48 |  1  1  1  1  2  2 |  1  1  3  3  3  3 | 1  1 1 1  4
----------------+----+-------------------+-------------------+------------
      s2s . .   |  2 | 24  *  *  *  *  * |  0  0  2  2  0  0 | 1  1 0 0  2  q
      s 2 s .   |  2 |  * 24  *  *  *  * |  0  0  2  0  2  0 | 1  0 1 0  2  q
      s  2  s   |  2 |  *  * 24  *  *  * |  0  0  0  2  2  0 | 0  1 1 0  2  q
      . s 2 s   |  2 |  *  *  * 24  *  * |  0  0  0  2  0  2 | 0  1 0 1  2  q
sefa( . s3s . ) |  2 |  *  *  *  * 48  * |  1  0  1  0  0  1 | 1  0 0 1  1  h
sefa( . . s4s ) |  2 |  *  *  *  *  * 48 |  0  1  0  0  1  1 | 0  0 1 1  1  k
----------------+----+-------------------+-------------------+------------
      . s3s .     3 |  0  0  0  0  3  0 | 16  *  *  *  *  * | 1  0 0 1  0  h-{3}
      . . s4s     4 |  0  0  0  0  0  4 |  * 12  *  *  *  * | 0  0 1 1  0  k-{4}
sefa( s2s3s . ) |  3 |  1  1  0  0  1  0 |  *  * 48  *  *  * | 1  0 0 0  1  oh&#q
sefa( s2s 2 s ) |  3 |  1  0  1  1  0  0 |  *  *  * 48  *  * | 0  1 0 0  1  q-{3}
sefa( s 2 s4s ) |  3 |  0  1  1  0  0  1 |  *  *  *  * 48  * | 0  0 1 0  1  ok&#q
sefa( . s3s4s ) |  3 |  0  0  0  1  1  1 |  *  *  *  *  * 48 | 0  0 0 1  1  qhk
----------------+----+-------------------+-------------------+------------
      s2s3s .     6 |  3  3  0  0  6  0 |  2  0  6  0  0  0 | 8  * * *  *
      s2s 2 s     4 |  2  0  2  2  0  0 |  0  0  0  4  0  0 | * 12 * *  *
      s 2 s4s     8 |  0  4  4  0  0  8 |  0  2  0  0  8  0 | *  * 6 *  *
      . s3s4s    24 |  0  0  0 12 24 24 |  8  6  0  0  0 24 | *  * * 2  *
sefa( s2s3s4s )   4 |  1  1  1  1  1  1 |  0  0  1  1  1  1 | *  * * * 48

starting figure: x x3x4x

© 2004-2021
top of page