Acronym snip / snad
Name s3s3s3s,
snub pentachoron / snub decachoron,
non-uniform alternation of gippid
Circumradius ...
Confer
general polytopal classes:
isogonal  
External
links
wikipedia   polytopewiki

No uniform realisation is possible, as can be seen from the vertex figure. Accordingly this describes a variety of polychora, depending on applied edge sizes. J. Bowers distinguishes in his acronyms between the only pennic symmetric cases (snip) and the fully decaic symmetric ones (snad).


Incidence matrix according to Dynkin symbol

s3s3s3s

demi( . . . .  ) | 60 |  1  1  1  2  2  2 |  1  1  1  3  3  3  3 | 1  1  1 1  4
-----------------+----+-------------------+----------------------+-------------
      s 2 s .    |  2 | 30  *  *  *  *  * |  0  0  0  2  0  2  0 | 1  0  1 0  2
      s . . s2*a |  2 |  * 30  *  *  *  * |  0  0  0  0  2  2  0 | 0  1  1 0  2
      . s 2 s    |  2 |  *  * 30  *  *  * |  0  0  0  0  2  0  2 | 0  1  0 1  2
sefa( s3s . .  ) |  2 |  *  *  * 60  *  * |  1  0  0  1  1  0  0 | 1  1  0 0  1
sefa( . s3s .  ) |  2 |  *  *  *  * 60  * |  0  1  0  1  0  0  1 | 1  0  0 1  1
sefa( . . s3s  ) |  2 |  *  *  *  *  * 60 |  0  0  1  0  0  1  1 | 0  0  1 1  1
-----------------+----+-------------------+----------------------+-------------
      s3s . .      3 |  0  0  0  3  0  0 | 20  *  *  *  *  *  * | 1  1  0 0  0
      . s3s .      3 |  0  0  0  0  3  0 |  * 20  *  *  *  *  * | 1  0  0 1  0
      . . s3s      3 |  0  0  0  0  0  3 |  *  * 20  *  *  *  * | 0  0  1 1  0
sefa( s3s3s .  ) |  3 |  1  0  0  1  1  0 |  *  *  * 60  *  *  * | 1  0  0 0  1
sefa( s3s 2 s  ) |  3 |  0  1  1  1  0  0 |  *  *  *  * 60  *  * | 0  1  0 0  1
sefa( s 2 s3s  ) |  3 |  1  1  0  0  0  1 |  *  *  *  *  * 60  * | 0  0  1 0  1
sefa( . s3s3s  ) |  3 |  0  0  1  0  1  1 |  *  *  *  *  *  * 60 | 0  0  0 1  1
-----------------+----+-------------------+----------------------+-------------
      s3s3s .     12 |  6  0  0 12 12  0 |  4  4  0 12  0  0  0 | 5  *  * *  *
      s3s 2 s      6 |  0  3  3  6  0  0 |  2  0  0  0  6  0  0 | * 10  * *  *
      s 2 s3s      6 |  3  3  0  0  0  6 |  0  0  2  0  0  6  0 | *  * 10 *  *
      . s3s3s     12 |  0  0  6  0 12 12 |  0  4  4  0  0  0 12 | *  *  * 5  *
sefa( s3s3s3s  )   4 |  1  1  1  1  1  1 |  0  0  0  1  1  1  1 | *  *  * * 60
or
demi( . . . . )   | 60 |  2  1   4  2 |  2  1   6   6 |  2  2  4
------------------+----+--------------+---------------+---------
      s 2 s .   & |  2 | 60  *   *  * |  0  0   2   2 |  1  1  1
      s . . s2*a  |  2 |  * 30   *  * |  0  0   0   4 |  0  2  2
sefa( s3s . . ) & |  2 |  *  * 120  * |  1  0   1   1 |  1  1  1
sefa( . s3s . )   |  2 |  *  *   * 60 |  0  1   2   0 |  2  0  1
------------------+----+--------------+---------------+---------
      s3s . .   &   3 |  0  0   3  0 | 40  *   *   * |  1  1  0
      . s3s .       3 |  0  0   0  3 |  * 20   *   * |  2  0  0
sefa( s3s3s . ) & |  3 |  1  0   1  1 |  *  * 120   * |  1  0  1
sefa( s3s 2 s ) & |  3 |  1  1   1  0 |  *  *   * 120 |  0  1  1
------------------+----+--------------+---------------+---------
      s3s3s .   &  12 |  6  0  12 12 |  4  4  12   0 | 10  *  *
      s3s 2 s   &   6 |  3  3   6  0 |  2  0   0   6 |  * 20  *
sefa( s3s3s3s )     4 |  2  1   2  1 |  0  0   2   2 |  *  * 60

starting figure: x3x3x3x

© 2004-2021
top of page