Acronym ... Name β3x3o4β (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```β3x3o4β

both( . . . .    ) | 192 |   2   2  1   2 |  1  2  1   4   3  2 |  1  2  1  1  3
-------------------+-----+----------------+---------------------+---------------
both( . x . .    ) |   2 | 192   *  *   * |  1  1  0   1   0  1 |  1  1  0  1  1
both( s . . s2*a ) |   2 |   * 192  *   * |  0  0  0   2   2  0 |  0  1  1  0  2
both( . . o4s    ) |   2 |   *   * 96   * |  0  0  0   0   2  2 |  0  0  1  1  2
sefa( β3x . .    ) |   2 |   *   *  * 192 |  0  1  1   1   0  0 |  1  1  0  0  1
-------------------+-----+----------------+---------------------+---------------
both( . x3o .    ) |   3 |   3   0  0   0 | 64  *  *   *   *  * |  1  0  0  1  0
β3x . .      ♦   6 |   3   0  0   3 |  * 64  *   *   *  * |  1  1  0  0  0
sefa( β3x3o .    ) |   3 |   0   0  0   3 |  *  * 64   *   *  * |  1  0  0  0  1
sefa( β3x . β2*a ) |   4 |   1   2  0   1 |  *  *  * 192   *  * |  0  1  0  0  1
sefa( s . o4s2*a ) |   3 |   0   2  1   0 |  *  *  *   * 192  * |  0  0  1  0  1
sefa( . x3o4s    ) |   6 |   3   0  3   0 |  *  *  *   *   * 64 |  0  0  0  1  1
-------------------+-----+----------------+---------------------+---------------
β3x3o .      ♦  12 |  12   0  0  12 |  4  4  4   0   0  0 | 16  *  *  *  *
β3x . β2*a   ♦  12 |   6   6  0   6 |  0  2  0   6   0  0 |  * 32  *  *  *
both( s . o4s2*a ) ♦   4 |   0   4  2   0 |  0  0  0   0   4  0 |  *  * 48  *  *
both( . x3o4s    ) ♦  12 |  12   0  6   0 |  4  0  0   0   0  4 |  *  *  * 16  *
sefa( β3x3o4β    ) ♦   9 |   3   6  3   3 |  0  0  1   3   3  1 |  *  *  *  * 64

starting figure: x3x3o4x
```