Acronym ... Name β3x3x4β (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```β3x3x4β

both( . . . .    ) | 384 |   1   1   1   1   1 |  1  1  1  1   2   2  1 |  1  1  1  1  2
-------------------+-----+---------------------+------------------------+---------------
both( . x . .    ) |   2 | 192   *   *   *   * |  1  1  0  0   1   0  1 |  1  1  0  1  1
both( . . x .    ) |   2 |   * 192   *   *   * |  1  0  1  1   0   1  0 |  1  0  1  1  1
both( s . . s2*a ) |   2 |   *   * 192   *   * |  0  0  0  0   2   2  0 |  0  1  1  0  2
sefa( β3x . .    ) |   2 |   *   *   * 192   * |  0  1  0  1   1   0  0 |  1  1  0  0  1
sefa( . . x4s    ) |   2 |   *   *   *   * 192 |  0  0  1  0   0   1  1 |  0  0  1  1  1
-------------------+-----+---------------------+------------------------+---------------
both( . x3x .    ) |   6 |   3   3   0   0   0 | 64  *  *  *   *   *  * |  1  0  0  1  0
β3x . .      ♦   6 |   3   0   0   3   0 |  * 64  *  *   *   *  * |  1  1  0  0  0
both( . . x4s    ) ♦   4 |   0   2   0   0   2 |  *  * 96  *   *   *  * |  0  0  1  1  0
sefa( β3x3x .    ) |   6 |   0   3   0   3   0 |  *  *  * 64   *   *  * |  1  0  0  0  1
sefa( β3x . β2*a ) |   4 |   1   0   2   1   0 |  *  *  *  * 192   *  * |  0  1  0  0  1
sefa( s . x4s2*a ) |   4 |   0   1   2   0   1 |  *  *  *  *   * 192  * |  0  0  1  0  1
sefa( . x3x4s    ) |   6 |   3   0   0   0   3 |  *  *  *  *   *   * 64 |  0  0  0  1  1
-------------------+-----+---------------------+------------------------+---------------
β3x3x .      ♦  24 |  12  12   0  12   0 |  4  4  0  4   0   0  0 | 16  *  *  *  *
β3x . β2*a   ♦  12 |   6   0   6   6   0 |  0  2  0  0   6   0  0 |  * 32  *  *  *
both( s . x4s2*a ) ♦   8 |   0   4   4   0   4 |  0  0  2  0   0   4  0 |  *  * 48  *  *
both( . x3x4s    ) ♦  24 |  12  12   0   0  12 |  4  0  6  0   0   0  4 |  *  *  * 16  *
both( β3x3x4β    ) ♦  12 |   3   3   6   3   3 |  0  0  0  1   3   3  1 |  *  *  *  * 64

starting figure: x3x3x4x
```