Acronym siddic
Name small distetracontoctachoron
Cross sections
 ©
Circumradius sqrt[2+sqrt(2)] = 1.847759
Coordinates
  1. (0, 0, sqrt(2)/2, (2+sqrt(2))/2)                   & all permutations, all changes of sign
  2. (1/2, 1/2, (1+sqrt(2))/2, (1+sqrt(2))/2)       & all permutations, all changes of sign
    (vertex inscribed srit)
General of army spic
Colonel of regiment spic
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope siddic is isomorphic to giddic, thereby replacing octagons by octagrams, and thus tic by quith. – As such siddic is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o4o3/2x4*a

. . .   .    | 144 |   4   4 |   4   8   4 |  1  4  4  1
-------------+-----+---------+-------------+------------
x . .   .    |   2 | 288   * |   2   2   0 |  1  2  1  0
. . .   x    |   2 |   * 288 |   0   2   2 |  0  1  2  1
-------------+-----+---------+-------------+------------
x3o .   .    |   3 |   3   0 | 192   *   * |  1  1  0  0
x . .   x4*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. . o3/2x    |   3 |   0   3 |   *   * 192 |  0  0  1  1
-------------+-----+---------+-------------+------------
x3o4o   .       6 |  12   0 |   8   0   0 | 24  *  *  *
x3o .   x4*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x . o3/2x4*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4o3/2x       6 |   0  12 |   0   0   8 |  *  *  * 24

x3o4/3o3x4*a

. .   . .    | 144 |   4   4 |   4   8   4 |  1  4  4  1
-------------+-----+---------+-------------+------------
x .   . .    |   2 | 288   * |   2   2   0 |  1  2  1  0
. .   . x    |   2 |   * 288 |   0   2   2 |  0  1  2  1
-------------+-----+---------+-------------+------------
x3o   . .    |   3 |   3   0 | 192   *   * |  1  1  0  0
x .   . x4*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. .   o3x    |   3 |   0   3 |   *   * 192 |  0  0  1  1
-------------+-----+---------+-------------+------------
x3o4/3o .       6 |  12   0 |   8   0   0 | 24  *  *  *
x3o   . x4*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x .   o3x4*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4/3o3x       6 |   0  12 |   0   0   8 |  *  *  * 24
or
. .   . .       | 144 |   8 |   8   8 |  2  8
----------------+-----+-----+---------+------
x .   . .     & |   2 | 576 |   2   2 |  1  3
----------------+-----+-----+---------+------
x3o   . .     & |   3 |   3 | 384   * |  1  1
x .   . x4*a    |   8 |   8 |   * 144 |  0  2
----------------+-----+-----+---------+------
x3o4/3o .     &    6 |  12 |   8   0 | 48  *
x3o   . x4*a  &   24 |  36 |   8   6 |  * 48

x3/2o4/3o3/2x4*a

.   .   .   .    | 144 |   4   4 |   4   8   4 |  1  4  4  1
-----------------+-----+---------+-------------+------------
x   .   .   .    |   2 | 288   * |   2   2   0 |  1  2  1  0
.   .   .   x    |   2 |   * 288 |   0   2   2 |  0  1  2  1
-----------------+-----+---------+-------------+------------
x3/2o   .   .    |   3 |   3   0 | 192   *   * |  1  1  0  0
x   .   .   x4*a |   8 |   4   4 |   * 144   * |  0  1  1  0
.   .   o3/2x    |   3 |   0   3 |   *   * 192 |  0  0  1  1
-----------------+-----+---------+-------------+------------
x3/2o4/3o   .       6 |  12   0 |   8   0   0 | 24  *  *  *
x3/2o   .   x4*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x   .   o3/2x4*a   24 |  12  24 |   0   6   8 |  *  * 24  *
.   o4/3o3/2x       6 |   0  12 |   0   0   8 |  *  *  * 24
or
.   .   .   .       | 144 |   8 |   8   8 |  2  8
--------------------+-----+-----+---------+------
x   .   .   .     & |   2 | 576 |   2   2 |  1  3
--------------------+-----+-----+---------+------
x3/2o   .   .     & |   3 |   3 | 384   * |  1  1
x   .   .   x4*a    |   8 |   8 |   * 144 |  0  2
--------------------+-----+-----+---------+------
x3/2o4/3o   .     &    6 |  12 |   8   0 | 48  *
x3/2o   .   x4*a  &   24 |  36 |   8   6 |  * 48

© 2004-2021
top of page