Acronym that Name trihexagonal tiling,Kagomé tiling ` ©` Vertex figure [(3,6)2] General of army (is itself convex) Colonel of regiment (is itself locally convex – other uniform tiling members: hoha   tha ) Dual rhomb-xAoo3xoAo3xooA3*a&#zx Confer Grünbaumian relatives: 2that   2that+inf{3}   general polytopal classes: partial Stott expansions Externallinks

Incidence matrix according to Dynkin symbol

```o3x6o   (N → ∞)

. . . | 3N |  4 |  2 2
------+----+----+-----
. x . |  2 | 6N |  1 1
------+----+----+-----
o3x . |  3 |  3 | 2N *
. x6o |  6 |  6 |  * N
```

```x3x3o3*a   (N → ∞)

. . .    | 3N |  2  2 | 2 1 1
---------+----+-------+------
x . .    |  2 | 3N  * | 1 1 0
. x .    |  2 |  * 3N | 1 0 1
---------+----+-------+------
x3x .    |  6 |  3  3 | N * *
x . o3*a |  3 |  3  0 | * N *
. x3o    |  3 |  0  3 | * * N
```

```o3x6/5o   (N → ∞)

. .   . | 3N |  4 |  2 2
--------+----+----+-----
. x   . |  2 | 6N |  1 1
--------+----+----+-----
o3x   . |  3 |  3 | 2N *
. x6/5o |  6 |  6 |  * N
```

```o3/2x6o   (N → ∞)

.   . . | 3N |  4 |  2 2
--------+----+----+-----
.   x . |  2 | 6N |  1 1
--------+----+----+-----
o3/2x . |  3 |  3 | 2N *
.   x6o |  6 |  6 |  * N
```

```o3/2x6/5o   (N → ∞)

.   .   . | 3N |  4 |  2 2
----------+----+----+-----
.   x   . |  2 | 6N |  1 1
----------+----+----+-----
o3/2x   . |  3 |  3 | 2N *
.   x6/5o |  6 |  6 |  * N
```

```x3x3/2o3/2*a   (N → ∞)

. .   .      | 3N |  2  2 | 2 1 1
-------------+----+-------+------
x .   .      |  2 | 3N  * | 1 1 0
. x   .      |  2 |  * 3N | 1 0 1
-------------+----+-------+------
x3x   .      |  6 |  3  3 | N * *
x .   o3/2*a |  3 |  3  0 | * N *
. x3/2o      |  3 |  0  3 | * * N
```

```s6x3o   (N → ∞)

demi( . . . ) | 3N |  2  2 | 2 1 1
--------------+----+-------+------
demi( . x . ) |  2 | 3N  * | 1 1 0
sefa( s6x . ) |  2 |  * 3N | 1 0 1
--------------+----+-------+------
s6x .   ♦  6 |  3  3 | N * *
demi( . x3o ) |  3 |  3  0 | * N *
sefa( s6x3o ) |  3 |  0  3 | * * N

starting figure: x6x3o
```

```s6o3x   (N → ∞)

demi( . . . ) | 3N |  2  2 | 1 1 2
--------------+----+-------+------
demi( . . x ) |  2 | 3N  * | 0 1 1
sefa( s6o . ) |  2 |  * 3N | 1 0 1
--------------+----+-------+------
s6o .   ♦  3 |  0  3 | N * *
demi( . o3x ) |  3 |  3  0 | * N *
sefa( s6o3x ) |  6 |  3  3 | * * N

starting figure: x6o3x
```