Acronym ...
Name x3β3o4x (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

x3β3o4x

both( . . . . ) | 192 |  1   2   2   2 |  2  1  2  1  2  2  2 |  1  1  2 1  2
----------------+-----+----------------+----------------------+--------------
both( x . . . ) |   2 | 96   *   *   * |  2  0  2  0  0  0  0 |  1  1  2 0  0
both( . . . x ) |   2 |  * 192   *   * |  1  1  0  0  0  1  1 |  1  0  1 1  1
sefa( x3β . . ) |   2 |  *   * 192   * |  0  0  1  0  1  1  0 |  0  1  1 0  1
sefa( . β3o . ) |   2 |  *   *   * 192 |  0  0  0  1  1  0  1 |  0  1  0 1  1
----------------+-----+----------------+----------------------+--------------
both( x . . x ) |   4 |  2   2   0   0 | 96  *  *  *  *  *  * |  1  0  1 0  0
both( . . o4x ) |   4 |  0   4   0   0 |  * 48  *  *  *  *  * |  1  0  0 1  0
      x3β . .      6 |  3   0   3   0 |  *  * 64  *  *  *  * |  0  1  1 0  0
      . β3o .      3 |  0   0   0   3 |  *  *  * 64  *  *  * |  0  1  0 1  0
sefa( x3β3o . ) |   4 |  0   0   2   2 |  *  *  *  * 96  *  * |  0  1  0 0  1
sefa( x3β 2 x ) |   4 |  0   2   2   0 |  *  *  *  *  * 96  * |  0  0  1 0  1
sefa( . β3o4x ) |   8 |  0   4   0   4 |  *  *  *  *  *  * 48 |  0  0  0 1  1
----------------+-----+----------------+----------------------+--------------
both( x . o4x )    8 |  4   8   0   0 |  4  2  0  0  0  0  0 | 24  *  * *  *
      x3β3o .     12 |  6   0  12  12 |  0  0  4  4  6  0  0 |  * 16  * *  *
      x3β 2 x     12 |  6   6   6   0 |  3  0  2  0  0  3  0 |  *  * 32 *  *
      . β3o4x     24 |  0  24   0  24 |  0  6  0  8  0  0  6 |  *  *  * 8  *
sefa( x3β3o4x )   16 |  0   8   8   8 |  0  0  0  0  4  4  2 |  *  *  * * 24

starting figure: x3x3o4x

© 2004-2021
top of page