Acronym ... Name xxfoF3oxxFx3xFxxo3Fofxx&#zx Confer uniform relative: ex   related CRFs: oFFxx3xxoof3fooxx3xxFFo&#zx   general polytopal classes: expanded kaleido-facetings

The relation to ex runs as follows: ex in pentic subsymmetry can be given as xffoo3oxoof3fooxo3ooffx&#zx. That will be transformed into xFfoo3o(-x)oof3fxoxo3ooffx&#zx. Then into xFfoo3oooof3f(-x)oxo3oxffx&#zx. Then into xFfoo3oooxf3f(-x)o(-x)o3oxfFx&#zx. Finally once more into xFfxo3ooo(-x)f3f(-x)ooo3oxfFx&#zx. Then a Stott expansion wrt. the second and third node produces this polychoron.

The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.

Incidence matrix according to Dynkin symbol

```xxfoF3oxxFx3xFxxo3Fofxx&#zx   → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,4), lacing(1,5), lacing(2,5), and lacing(4,5)

o....3o....3o....3o....     & | 120   *   * |   2  0  0   0   2   2   0   0 |  1  0  2  1  0   2   0   1   0   2   0 |  1  1  2  0  1
.o...3.o...3.o...3.o...     & |   * 120   * |   0  1  1   0   0   0   2   2 |  0  1  0  0  0   1   3   0   2   0   2 |  0  3  1  1  0
..o..3..o..3..o..3..o..       |   *   * 120 |   0  0  0   2   0   2   2   0 |  0  0  0  0  1   2   0   2   2   2   1 |  0  2  2  0  2
------------------------------+-------------+-------------------------------+----------------------------------------+---------------
x.... ..... ..... .....     & |   2   0   0 | 120  *  *   *   *   *   *   * |  1  0  1  0  0   1   0   0   0   0   0 |  1  1  1  0  0
.x... ..... ..... .....     & |   0   2   0 |   * 60  *   *   *   *   *   * |  0  1  0  0  0   0   2   0   0   0   0 |  0  2  0  1  0
..... .x... ..... .....     & |   0   2   0 |   *  * 60   *   *   *   *   * |  0  1  0  0  0   0   0   0   2   0   0 |  0  2  1  0  0
..... ..x.. ..... .....     & |   0   0   2 |   *  *  * 120   *   *   *   * |  0  0  0  0  1   0   0   1   1   1   0 |  0  1  1  0  2
..... ..... x.... .....     & |   2   0   0 |   *  *  *   * 120   *   *   * |  0  0  1  1  0   0   0   0   0   1   0 |  1  0  1  0  1
o.o..3o.o..3o.o..3o.o..&#x  & |   1   0   1 |   *  *  *   *   * 240   *   * |  0  0  0  0  0   1   0   1   0   1   0 |  0  1  1  0  1
.oo..3.oo..3.oo..3.oo..&#x  & |   0   1   1 |   *  *  *   *   *   * 240   * |  0  0  0  0  0   1   0   0   1   0   1 |  0  2  1  0  0
.o.o.3.o.o.3.o.o.3.o.o.&#x    |   0   2   0 |   *  *  *   *   *   *   * 120 |  0  0  0  0  0   0   2   0   0   0   1 |  0  2  0  1  0
------------------------------+-------------+-------------------------------+----------------------------------------+---------------
x....3o.... ..... .....     & |   3   0   0 |   3  0  0   0   0   0   0   0 | 40  *  *  *  *   *   *   *   *   *   * |  1  1  0  0  0
.x...3.x... ..... .....     & |   0   6   0 |   0  3  3   0   0   0   0   0 |  * 20  *  *  *   *   *   *   *   *   * |  0  2  0  0  0
x.... ..... x.... .....     & |   4   0   0 |   2  0  0   0   2   0   0   0 |  *  * 60  *  *   *   *   *   *   *   * |  1  0  1  0  0
..... o....3x.... .....     & |   3   0   0 |   0  0  0   0   3   0   0   0 |  *  *  * 40  *   *   *   *   *   *   * |  1  0  0  0  1
..... ..x..3..x.. .....       |   0   0   6 |   0  0  0   6   0   0   0   0 |  *  *  *  * 20   *   *   *   *   *   * |  0  0  0  0  2
x.fo. ..... ..... .....&#xt & |   2   1   2 |   1  0  0   0   0   2   2   0 |  *  *  *  *  * 120   *   *   *   *   * |  0  1  1  0  0
.x.o. ..... ..... .....&#x  & |   0   3   0 |   0  1  0   0   0   0   0   2 |  *  *  *  *  *   * 120   *   *   *   * |  0  1  0  1  0
..... o.x.. ..... .....&#x  & |   1   0   2 |   0  0  0   1   0   2   0   0 |  *  *  *  *  *   *   * 120   *   *   * |  0  1  0  0  1
..... .xx.. ..... .....&#x  & |   0   2   2 |   0  0  1   1   0   0   2   0 |  *  *  *  *  *   *   *   * 120   *   * |  0  1  1  0  0
..... ..... x.x.. .....&#x  & |   2   0   2 |   0  0  0   1   1   2   0   0 |  *  *  *  *  *   *   *   *   * 120   * |  0  0  1  0  1
.ooo.3.ooo.3.ooo.3.ooo.&#x    |   0   2   1 |   0  0  0   0   0   0   2   1 |  *  *  *  *  *   *   *   *   *   * 120 |  0  2  0  0  0
------------------------------+-------------+-------------------------------+----------------------------------------+---------------
x....3o....3x.... .....     & ♦  12   0   0 |  12  0  0   0  12   0   0   0 |  4  0  6  4  0   0   0   0   0   0   0 | 10  *  *  *  *
xxfo.3oxxF. ..... .....&#zx & ♦   3   9   6 |   3  3  3   3   0   6  12   6 |  1  1  0  0  0   3   3   3   3   0   6 |  * 40  *  *  *
x.fo. ..... x.xx. .....&#xt & ♦   4   2   4 |   2  0  1   2   2   4   4   0 |  0  0  1  0  0   2   0   0   2   2   0 |  *  * 60  *  *
.x.o. ..... ..... .o.x.&#x    ♦   0   4   0 |   0  2  0   0   0   0   0   4 |  0  0  0  0  0   0   4   0   0   0   0 |  *  *  * 30  *
..... o.x..3x.x.. .....&#x  & ♦   3   0   6 |   0  0  0   6   3   6   0   0 |  0  0  0  1  1   0   0   3   0   3   0 |  *  *  *  * 40
```