Physica A 191 (1992) 554-558

e ———
North-Holland m m

Fractally shaped acceptance domains of
quasiperiodic square—triangle tilings with
dodecagonal symmetry

M. Baake, R. Klitzing and M. Schlottmann

Institut fiir Theoredsche Physik der Universiit Tibingen, Auf der Morgensielle 14,
W-7400 Tiibingen, Germany

We generate a quasiperiodic, dodecagonally symmetric tiling of the plane by squares and
cquilateral triangles embedded in a higher-dimensional periodic structure. Starting from a 4D
lattice frequently used for the embedding of dodecagonal structures, we iteratively construct
an acceptance domain (AD) for a quasiperiodic dodecagonal point set which proves to be the
vertex set of a square—triangle tiling. It turns out that our procedure leads to fractally
bounded ADs but leaves enough freedom to generate several different local isomorphism
classes.

1. Introduction

Quasicrystals with dodecagonal symmetry have been discovered almost
contemporancously [1] with the well-known icosahedral alloys [2]. As indicated
by high resolution electron micrographs (HREM) [1,3], these structures closely
resemble decorations of periodically stacked dodecagonal plane tilings contain-
ing squares and equilateral triangles accompanied by a certain amount of 30°
rhombi. In analogy to the celebrated decagonal Penrose pattern [4,5], there
have been various proposals to construct quasiperiodic dodecagonal tilings with
these constituents [6,7]. Since the amount of thombi seen in the HREM [3] is
really small and could probably be considered as a defect structure in an ideal
square—triangle tiling, one has tried to throw out the rhombi completely from
the tilings. Especially in ref. [6] one finds such a tiling constructed by deflation
but involving random choiccs at cach rccursion step.

In this paper, we present a completely deterministic ansatz for the generation
of dodecagonal square-triangle tilings by the well-known cut-and-project
method from a lattice in 4D space. This construction automatically guarantees
the guasiperiodicity of the tiling and can easily be implemented in a computer
code for the pattern generation.
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2. The pattern and its vertex acceptance domain

The general framework in which our construction takes place is standard
(see, e.g., ref. |8]); we outline it here because we have to introduce some
notation anyhow. We use the following 4D lattice.

Let E, be the 2D subspace of the physical space which carries the
quasiperiodic part of the quasicrystalline structure. It can be embedded in a 4D
space £, ©E, where E, denotes the 2D complementary “internal” space. The
4D lattice A 18 defined to be the integral linear span ot the vectors

ej=e?+ej' {F=1;00, 12,
with eL! =(D§J”])"_'e|1| ; ﬂj-” = (DTZ'):’”_Hef d (1)
where e']', e; are some chosen unit vectors in E,, E,, respectively, and Dhm,
D'* denote the rotation by 2w/12 in E, E , respectively. We denote a
general lattice point by ¢ and its projection into k|, E by g, g, , respectively.

A discrete set of points in £, can then be obtained as follows. Let V be a
nonempty bounded subset of E, which is the closure of its interior (V' = V).
For every ¢, €[ define

@:L={‘IHC¢EQ¢+V, gEA). (2)

(This is well defined as one checks that A prujects one-to-one into Eyand E,.)
The set V serves as the acceptance domain (AD) for the points of A to be
projected into E; to become members of EF'YL_ . Such a point set is quasiperiodic
(the Fourier transform of §-scatterers placed on the set ?" consists of Bragg
peaks on a finitely generated module) if ¢, is not contained in a boundary of
somc g, | V. l'urthermore, if V is invariant under the dodecagonal rotation
BLa, 9’: has generalized dodecagonal symmetry (every finite configuration of

P occurs in every orientation reachable by D|'?’; diffraction intensities of

symmetry preserving decorations of 9"1 are dodecagonally symmetric). Our
task now is to define the AD V in a suitable way such that the sets ! are the
vertex sets of squarc—trianglc tilings.

Consider the following system of affine similarity transformations in E :

hx):=e +(2-V3)(DIYU " D (j=1,...,6),

h(x):=e; —e; +(2—V3)x,

hy(x):=e; —e5 +(2-VI)(D{?)'x, (3)
ho(x) =e;,—e; +(2—V3)x,

hio(x) 1= ely ~ & + (2= V3D
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We then define

K,:=conv{0,(V3—1)e), e, —e,,e/,—e;} (convex closure) (4)
and
10 = 12 x
KJ'I+] = Kn U U hj{Kn} ? K = U Kﬂ 3 V = U (D(J.Iz})}(K} - (S)
j=1 n=0 ;=1

Obviously, V is bounded and invariant under DTE', and it can easily be seen

that also V" = V, therefore, the basic demands are fulfilled. More tedious, but
possible, is the proof of the following facts: (i) V and ¢, + V' overlap only if
|q“|2—:'1; (ii) V is covered by the images of A=V N(e, +V)N(es +V)
under the rotations (D'*), j=1,...,12; (iii) A is covered by (D{*)""(4A)
and O:=VN(e; +V)N(e, +V)N(e; +e, +V); (iv) O is covered by A
and (D'"")*(D).

From this and the definition of V and 2 , taking into account dodecagonal
symmetry, one concludes that (i) the minimal distance of points in 9’:: is at
least 1; (ii) every point of @ is part of a configuration of three points in P:';.
spanning an equilateral triangle of bond length 1; (iii) each bond of such a
triangle is also a bond of either a second triangular configuration in Pfl or a
configuration of four points in % spanning a square of bond length 1; (iv)
each bond of such a square is also a bond of either a second square or a

Fig. 1. Typical finite portion of a quasiperiodic dodecagonal square-triangle tiling.
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Fig. 2. The acceptance domain filled by the projection of the lift of 32000 vertives in perpendicular
space. The circle shaped holes in the bulk are finite size effects.

tnangle. Collecting these properties one easily argues that indeed EP:’I 1s the
vertex set of a square—triangle tiling, thereby achieving our goal.

As the very definition of the pattern is constructive, we have no difficulty to
visualize finite portions of it (fig. 1). In order to demonstrate the AD V and the
fractal nature of its boundary, we chose a method suitable also for the
determination of presumably existing ADs of given square—triangle patterns
(e.g., extracted from a HREM, if large enough). For a tiling by squares and
equilateral triangles it is always possible to consider its vertex set as the
projection image of a uniquely determined subset of A. One is free to project
this subset into E,, and if the vertex set is a set ?) | —V is denscly and
uniformly filled by this projection. In fig. 2 we have depiE[ed the results of this
procedure applied to a finite portion of 32000 vertices of our pattern. One
observes the dodecagonal symmetry of V and the “windmill” structure on
every scale (2—V3)" in its boundary region. (The circle shaped holes in the
bulk manifest finite size effects resembling the decterministic rather than
random nature of this procedure and are not present in V.)

3. Comments
Thec acceptance domain we used for the gencration of our pattern is rather

complicated and one may ask if one could achieve the same goal using a
polyhedral AD as well. But a deeper look into the circumstances leading to the
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definition of V seem to indicate that this is impossible for a dodecagonal
square—triangle tiling at least if its vertex set is obtained by only one type of
AD. On the other hand, there is some freedom in the choice of the starting set
K, and the system of transformations h;; this results in the existence of a
continuous variety of quasiperiodic square—triangle tilings with dodecagonal
symmetry. In fact, it is possible to fractalize the boundary of V' (which contains
straight line segments in the version depicted in fig. 2) completely thereby
obtaining a dodecagonal square-triangle tiling with very simple infiation/
deflation symmetries, which will be presented in a forthcoming publication.
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Note added in proof

After submission of this article we became aware of related work by A.P.
Smith on quasiperiodic square—triangle tilings (J. Non-Cryst. Solids, sub-
mitted).
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