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Abstract: The set of uniform polyhedra is grouped into classes of figures with the same 

edge skeletons. For each class one representative is chosen. Each such class is 

investigated further for other polyhedra with regular faces only, following the 

constraint that the edges remain a non-empty subset of the skeleton under 

consideration. 

INTRODUCTION 

In the days of the old Greeks Plato enumerated the five 

convex regular polyhedra which are henceforth associated 

with his name. A further set of 13 convex polyhedra was 

named after Archimedes, these have regular faces only, of at 

least 2 different kinds, and the vertex figures of the 

polyhedra being transitively permuted by some symmetry 

which has more than just one “true” rotational axis. I.e. the 

infinite set of prisms and antiprisms is classically not 

subsumed under his name. 

After that early period of polyhedral interest it took some 

time up to the days of Kepler and Poinsot who firstly 

enumerated the additional 4 non-convex regular polyhedra.   
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The ones which are stellations of the convex ones were found first, while the ones which 

are facetings followed a bit later. But it was only in the last century that a team around 

Coxeter managed to enumerate an still larger (inclusive) set of polyhedra which extends 

the set of 9 regular polyhedra in the same way that the Archimedeans (taken in an 

inclusive sense, and subsuming the 2 prism series as well) are related to the Platonics. 

This set of figures was called the set of uniform polyhedra. Those are uniform in the 

sense of having just one type of vertex figure, which is spread throughout transitively by 

the action of some symmetry group. A second rule understood by “uniform polyhedra” 

is that all edges have to be of equal length, or, what comes to be the same but is better 

suited for dimensional extension, is that this second part of uniformity has to be applied 

as a dimensional recursion. Hereby starting the iteration with uniform polygons 

considered to be the same as regular ones. Then generally polytopes are considered 

uniform if vertex transitivity applies and secondly all facets are uniform in turn.  

 

Table of uniform polyhedra: 

 
No Name of uniform polyhedron Bowers 

acronym 
Dynkin symbol *) Wythoff 

symbol 
Sequence of 
faces per vertex 
**) 

U01 Tetrahedron tet @-3-o-3-o 3 | 2 3 [3^3] 

U02 Truncated tetrahedron tut @-3-@-3-o 2 3 | 3 [3,6^2] 

U03 Octahemioctahedron oho @-3-@-3/2-o-3-: 3/2 3 | 3 [3/2,6,3,6] 

U04 Tetrahomihexahedron thah @-3/2-o-3-@ 3/2 3 | 2 [3/2,4,3,4] 

U05 Octahedron, 
tetratetrahedron 

oct o-3-@-3-o, 

@-3-o-4-o 
2 | 3 3, 
4 | 2 3 

[3^4] 

U06 Cube, 
hexahedron 

cube @-4-o-3-o 3 | 2 4 [4^3] 

U07 Cuboctahedron, 
(small) rhombitetratetrahedron 

co @-3-o-3-@, 

o-3-@-4-o 
3 3 | 2, 
2 | 3 4 

[(3,4)^2] 

U08 Truncated octahedron, 
(omni-)truncated 
tetratetrahedron, 
great rhombitetratetrahedron 

toe @-3-@-3-@, 

@-3-@-4-o 
2 3 3 |, 
2 4 | 3 

[4,6^2] 

U09 Truncated cube tic @-4-@-3-o 2 3 | 4 [3,8^2] 

U10 (Small) Rhombicuboctahedron sirco @-3-o-4-@ 3 4 | 2 [3,4^3] 

U11 (Omni-)truncated 
cuboctahedron,  
Great rhombicuboctahedron 

girco @-3-@-4-@ 2 3 4 | [4,6,8] 

U12 Snub cube snic O-3-O-4-O | 2 3 4 [3^4,4] 

U13 Small cubicuboctahedron socco @-4-@-3/2-o-4-: 3/2 4 | 4 [3/2,8,4,8] 

U14 Great cubicuboctahedron gocco @-4/3-@-3-o-4-: 3 4 | 4/3 [8/3,3,8/3,4] 

U15 Cubohemioctahedron cho @-3-@-4/3-o-4-: 4/3 4 | 3 [4/3,6,4,6] 

U16 Cubitruncated cuboctahedron, 
cuboctatruncated 
cuboctahedron 

cotco @-4/3-@-3-@-4-: 4/3 3 4 | [8/3,6,8] 

U17 Great rhombicuboctahedron, 
quasirhombicuboctahedron 

querco @-3/2-o-4-@ 3/2 4 | 2 [3/2,4^3] 

U18 Small rhombihexahedron sroh @-3/2-@-4-@ 

***) 
3/2 2 4 | 
***) 

[8/7,4/3,8,4] 
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No Name of uniform polyhedron Bowers 
acronym 

Dynkin symbol *) Wythoff 
symbol 

Sequence of 
faces per vertex 
**) 

U19 Stellated truncated hexahedron, 
quasitruncated hexahedron 

quith @-4/3-@-3-o 2 3 | 4/3 [(8/3)^2,3] 

U20 Great truncated cuboctahedron, 
quasitruncated cuboctahedron 

quitco @-4/3-@-3-@ 4/3 2 3 | [8/3,4,6] 

U21 Great rhombihexahedron groh @-4/3-@-3/2-@ 

***) 
4/3 3/2 2 | 
***) 

[4/3,8/5,4,8/3] 

U22 Icosahedron, 
Snub tetrahedron 

ike O-3-O-3-O, 

@-3-o-5-o 
2 3 3 |, 
5 | 2 3 

[3^5] 

U23 Dodecahedron doe @-5-o-3-o 3 | 2 5 [5^3] 

U24 Icosidodecahedron id o-3-@-5-o 2 | 3 5 [(3,5)^2] 

U25 Truncated icosahedron, 
“soccer ball” 

ti @-3-@-5-o 2 5 | 3 [5,6^2] 

U26 Truncated dodecahedron tid @-5-@-3-o 2 3 | 5 [3,10^2] 

U27 (Small) 
Rhombicosidodecahedron 

srid @-3-o-5-@ 3 5 | 2 [3,4,5,4] 

U28 (Omni-)truncated 
icosidodecahedron, 
great rhombicosidodecahedron 

grid @-3-@-5-@ 2 3 5 | [4,6,10] 

U29 Snub dodecahedron snid O-3-O-5-O | 2 3 5 [3^4,5] 

U30 Small ditrigonal 
icosidodecahedron 

sidtid o-5/2-@-3-o-3-: 3 | 5/2 3 [(5/2,3)^3] 

U31 Small icosicosidodecahedron siid @-3-@-5/2-o-3-: 5/2 3 | 3 [5/2,6,3,6] 

U32 Small snub 
icosicosidodecahedron 

seside O-5/2-O-3-O-3-: | 5/2 3 3 [5/2,3^5] 

U33 Small dodekicosidodecahedron saddid @-5-@-3/2-o-5-: 3/2 5 | 5 [3/2,10,5,10] 

U34 Small stellated dodecahedron sissid @-5/2-o-5-o 5 | 2 5/2 [(5/2)^5] 

U35 Great dodecahedron gad @-5-o-5/2-o 5/2 | 2 5 [5^5]/2 

U36 Dodecadodecahedron did o-5/2-@-5-o 2 | 5/2 5 [(5/2,5)^2] 

U37 Truncated great dodecahedron tigid @-5-@-5/2-o 2 5/2 | 5 [5/2,10^2] 

U38 Rhombidodecadodecahedron raded @-5/2-o-5-@ 5/2 5 | 2 [5/2,4,5,4] 

U39 Small 
rhombidodecadodecahedron 

sird @-5/2-@-5-@  

***) 
2 5/2 5 |  
***) 

[10/9,4/3,10,4] 

U40 Snub dodecadodecahedron siddid O-5/2-O-5-O | 2 5/2 5 [5/2,3^2,5,3] 

U41 Ditrigonal dodecadodecahedron ditdid @-5/3-o-3-o-5-: 3 | 5/3 5 [(5/3,5)^3] 

U42 Great ditrigonal 
dodekicosidodecahedron 

gidditdid @-5/3-@-3-o-5-: 3 5 | 5/3 [3,10/3,5,10/3] 

U43 Small ditrigonal 
dodekicosidodecahedron 

sidditdid @-5-@-5/3-o-3-: 5/3 3 | 5 [5/3,10,3,10] 

U44 Icosidodecadodecahedron ided @-3-@-5/3-o-5-: 5/3 5 | 3 [5/3,6,5,6] 

U45 Icositruncated 
dodecadodecahedron, 
icosidodecatruncated 
icosidodecahedron 

idtid @-5/3-@-3-@-5-: 5/3 3 5 | [10/3,6,10] 

U46 Snub icosidodecadodecahedron sided O-5/3-O-3-O-5-: | 5/3 3 5  [5/3,3^3,5,3] 

U47 Great ditrigonal 
icosidodecahedron 

gidtid o-3-@-5-o-3/2-: 3/2 | 3 5 [(3,5)^3]/2 

U48 Great icosicosidodecahedron giid @-3-@-3/2-o-5-: 3/2 5 | 3 [5/2,6,5,6] 

U49 Small icosihemidodecahedron seihid @-5-@-3/2-o-3-: 3/2 3 | 5 [3/2,10,3,10] 

U50 Small dodekicosahedron siddy @-3/2-@-3-@-5-: 

***) 
3/2 3 5 | 
***) 

[10/9,6/5,10,6] 

U51 Small 
dodecahemidodecahedron 

sidhid @-5-@-5/4-o-5-: 5/4 5 | 5 [5/4,10,5,10] 

U52 Great stellated dodecahedron gissid @-5/2-o-3-o 3 | 2 5/2 [(5/2)^3] 

U53 Great icosahedron gike @-3-o-5/2-o 5/2 | 2 3 [3^5]/2 

U54 Great icosidodecahedron gid o-5/2-@-3-o 2 | 5/2 3 [(5/2,3)^2] 

U55 Great truncated icosahedron, 
truncated great icosahedron 

tiggy @-3-@-5/2-o 2 5/2 | 3 [5/2,6^2] 
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No Name of uniform polyhedron Bowers 
acronym 

Dynkin symbol *) Wythoff 
symbol 

Sequence of 
faces per vertex 
**) 

U56 Rhombicosahedron ri @-5/2-@-3-@ 

***) 
2 5/2 3 | 
***) 

[6/5,4/3,6,4] 

U57 Great snub icosidodecahedron gosid O-5/2-O-3-O | 2 5/2 3 [5/2,3^4] 

U58 Small stellated truncated 
dodecahedron, 
quasitruncated small stellated 
dodecahedron 

quit sissid @-5/3-@-5-o 2 5 | 5/3 [(10/3)^2,5] 

U59 (Quasi-)truncated 
dodecadodecahedron 

quitdid @-5/3-@-5-@ 5/3 2 5 | [10/3,4,10] 

U60 Inverted snub 
dodecadodecahedron 

isdid O-5/3-O-5-O | 5/3 2 5 [5/3,3^2,5,3] 

U61 Great dodekicosidodecahedron gaddid @-5/3-@-5/2-o-3-: 5/2 3 | 5/3 [5/2,10/3,3,10/3] 

U62 Small dodecahemicosahedron sidhei @-3-@-5/3-o-5/2-: 5/3 5/2 | 3 [5/3,6,5/2,6] 

U63 Great dodekicosahedron giddy @-5/3-@-5/2-@-5-: 

***) 
5/3 5/2 3 | 
***) 

[6/5,10/7,6,10/3] 

U64 Great snub 
dodekicosidodecahedron 

gisdid O-5/3-O-5/2-O-5-: | 5/3 5/2 3 [5/3,3^3,5/2,3] 

U65 Great dodecahemicosahedron gidhei @-3-@-5/4-5-: 5/4 5 | 3 [5/4,6,5,6] 

U66 Great stellated truncated 
dodecahedron, 
quasitruncated great stellated 
dodecahedron 

quit gissid @-5/3-@-3-o 2 3 | 5/3 [(10/3)^2,3] 

U67 Great rhombicosidodecahedron, 
quasirhombicosidodecahedron 

qrid @-5/3-o-3-@ 5/3 3 | 2 [5/3,4,3,4] 

U68 Great (quasi-)truncated 
icosidodecahedron 

gaquatid @-5/3-@-3-@ 5/3 2 3 | [10/3,4,6] 

U69 Great inverted snub 
icosidodecahedron 

gisid O-5/3-O-3-O | 5/3 2 3 [5/3,3^4] 

U70 Great 
dodecahemidodecahedron 

gidhid @-5/3-@-5/3-o-5/2-: 5/3 5/2 | 5/3 [(10/3,5/3)^2] 

U71 Great icosihemidodecahedron geihid @-5/3-@-3/2-o-3-: 3/2 3 | 5/3 [3/2,10/3,3,10/3] 

U72 Small (inverted) retrosnub 
icosicosidodecahedron, 
yog sothoth 

sirsid O-3/2-O-3/2-O-5/2-: | 3/2 3/2 5/2 [(3/2,3)^2,5/2,3] 

U73 Great rhombidodecahedron gird @-3/2-@-5/3-@ 

***) 
3/2 5/3 2 | 
***) 

[4/3,10/7,4,10/3] 

U74 Great retrosnub 
icosidodecahedron 

girsid O-3/2-O-5/3-O | 3/2 5/3 2 [3/2,3,5/3,3^2] 

U75 Great 
dirhombicosidodecahedron, 
Miller’s monster 

gidrid None | 3/2 5/3 3 5/2 [3/2,4,5/3,4,3,4,5
/2,4] 

****) Pentagonal prism pip @  @-5-o 2 5 | 2 [4^2,5] 

****) Pentagonal antiprism pap O  O-5-O | 2 2 5 [3^3,5] 

****) Pentagrammic prism, 
stellar prism 

stip @  @-5/2-o 5/2 2 | 2 [5/2,4^2] 

****) Pentagrammic antiprism, 
stellar antiprism 

stap O  O-5/2-O | 5/2 2 2 [5/2,3^3] 

****) Pentagrammic crossed 
antiprism, 
pentagrammic retrograde 
antiprism, 
pentagrammic retroprism, 
stellar retroprism 

starp O  O-5/3-O | 5/3 2 2 [5/3,3^3] 

*) Circularly closed Dynkin graphs are for linearized denotation cut upon somewhere, a final colon reminds 

then to reconnect that final open link back to the first knot. 

**) Exponents in the face sequence of vertex figures are to be read as multiplicities of the corresponding face 

or partial face sequence within the total sequence. Divisors behind the square bracket are to be read as 

winding numbers. (Winding numbers of 0 or 1 are suppressed.) 



 AXIAL-SYMMETRICAL EDGE-FACETINGS  245

***) More precisely that symbol does specify a somehow exotic polyhedron with faces of the kind @-n/d-@ 

with even divisor. Thus that face would have pairwise coincident vertices and edges. The uniform 

polyhedron, as usually understood, is a reduction of that exotic one. Those exotic faces are withdrawn, while 

the thus opened coincident edges are identified. 

****) Entries beyond U75 just represent some examples from the infinite dihedral series.  

FACETINGS 

Truncation is a well-known process which can be applied to different more or less 

symmetric polyhedra. Many of the Archimedeans are derivable from the Platonics 

through truncation. Truncation introduces additional faces as cutting planes, while 

former vertices or edges are removed. That process of truncation can be considered 

continuous starting at one end of the polyhedron, running through it getting deeper and 

deeper, until the cutting plane passes through the opposite end, and the former 

polyhedron is reduced to the empty set. Application of that process of truncation 

simultaneously at symmetry equivalent places to some symmetrical figure increases the 

esthetical appeal.  

 

 

 

 

Truncation vs. faceting 

 

 

 

 
ike-5-5 General faceting vs. edge-faceting sidtid-0-8-12-0-b 

Already the set of Archimedeans shows that special instances in that continuous process 

are of higher interest than others. Suppose now that the polygon, defined by intersection 
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of the cutting plane with the polyhedron, has its vertices only at vertex positions of the 

former polyhedron. In that case one speaks of a faceting. 

Note that facetings are dual to the more elaborated stellations, just as apiculations are 

dual to truncations, a process used in the dual set of the Archimedeans, the Catalans. A 

well known fact is that there are different types of stellations. First there are those which 

can be derived by extending the edges. For instance, extending the edges of the 

pentagons of the dodecahedron (doe), yields pentagrammic faces which reconnect to 

produce the small stellated dodecahedron (sissid). A looser type of stellation can be 

obtained by enlarging the faces again, but using face-plane intersections for new edges, 

which were not contained in the previously edge set. This latter kind of stellation is also 

known under the name greatening. For instance, by extending the faces of an octahedron 

(oct) its possible to get the compound of 2 tetrahedra (tet) positioned dually. Kepler 

introduced the name Stella Octangula for that compound. In the same way as there are 2 

types of stellations, there are 2 types of facetings too. The looser type of stellation, the 

process of greatening, is dually associated to the process of faceting just introduced. It 

keeps all (or some) faces, whereas the old edges do not contribute to the set of the new 

ones. Similarly, all (or some) vertices are kept while faceting in the looser sense, and 

again the old edges do not contribute to the set of the new ones. Opposed to that, 

stellation in the stricter sense reuses both, face-planes and edges. And there is a dual 

process as well, the more restricted type of faceting, which reuses not only vertices but 

also the old edges. That stricter type of faceting is usually called edge-faceting and will 

be the main subject of this article. 

Restricting to edge-facetings, it gets obvious too, that no polyhedra with just 3 faces at 

some vertex could have any faceting face incident to that vertex other than the 3 existing 

ones. So, many of the uniforms disqualify for edge-facetation a priori. As further 

uniform polyhedra just have edges of one length, edge-facetation can only produce new 

faceting faces with the same property. 

The task of edge-faceting the set of uniform polyhedra while keeping their own 

symmetry is clearly too restricted. Therefore the author considers in this article not only 

symmetry preserving facetings, but sub-symmetrical ones as well. It will be shown that 

this produces a vast plenitude of interesting new polyhedra. Unusual symmetries as 

chiral tetrahedral (see left) do occur just as polyhedra which open their circumcenter to 

the access from outside, even getting toroids (see last figure). On the other hand, in 

order to keep that immense task manageable, the author had to restrict the kind of 
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accepted sub-symmetries somewhat a priori. They are chosen to show up at least some 

rotational axis of order greater than 2. However, the computational steps given later on, 

would apply to the full spectrum alike. 

Regiments and Colonels 

For getting order in a plenitude of things, names derived from military seem quite 

appropriate. George Olshevsky defined regiments of any n-dimensional polytope (and 

thus especially of any polyhedron for n=3) to be the set of all those n-dimensional 

polytopes which have the same edge skeleton. For instance the icosahedron (ike) and the 

great dodecahedron (gike) do belong to the same regiment. 

The leading representative of a regiment he calls its colonel. It is defined to be that 

polyhedron which is as convex as possible, i.e. having convex vertex figures only. So it 

is either the convex hull, if that is a member of the regiment, or at least some locally 

convex polyhedron. (For the latter class is just defined by that requirement.) 

From the definition all members of a regiment have the symmetry of the colonel. The 

author applies those terms in a slightly weaker form in order to get those classes to 

contain sub-symmetrical members too, asking only that the skeleton of the members is at 

least a subset of that of their colonel. 

From these concepts we get the following systematic for the set of uniform polyhedra: 
 

Colonel Edges 
per 
vertex 

Further uniform 
members of its 
regiment 

Colonel Edges 
per 
vertex 

Further 
uniform 
members of  
its regiment 

Colonel Edges 
per 
vertex 

Further 
uniform 
members of 
its regiment 

tet 3 - ti 3 - gid 4 gidhid, geihid 

tut 3 - tid 3 - tiggy 3 - 

oct 4 thah srid 4 saddid, sird gosid 5 - 

cube 3 - grid 3 - quit sissid 3 - 

co 4 oho, cho snid 5 - quitdid 3 - 

toe 3 - sidtid 6 ditdid, gidtid isdid 5 - 

tic 3 - siid 4 sidditdid, siddy gaddid 4 qrid, gird 

sirco 4 socco, sroh seside 6 - quit gissid 3 - 

girco 3 - sissid 5 gike, starp *) gaquatid 3 - 

snic 5 - did 4 sidhei, gidhei gisid 5 - 

gocco 4 querco, groh tigid 3 - sirsid 6 - 

cotco 3 - raded 4 ided, ri girsid 5 - 

quith 3 - siddid 5 - gidrid 6 gisdid *) 

quitco 3 - gidditdid 4 giid, giddy pip 3 - 

ike 5 gad, pap *) idtid 3 - stip 3 - 

doe 3 - sided 6 - stap 4 - 

id 4 seihid, sidhid gissid 3 -    

*) Those thus marked do show already some sort of sub-symmetry. 
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Algorithm 

First we note that the research only has to be applied to regiments instead of all uniform 

polyhedra. Further, for those with 3 edges per vertex it is senseless to be applied. 

Step 1:  Apply numbers to all the vertices of the colonel.  

Step 2:  Describe all edges of the colonel by pairs of vertex numbers.  

 

 
 

 

gid-6-10-1 gaddid-6-6-6-12 sissid-6-10 

Step 3:  Describe all faces of the colonel and all other planar faces which could be 

described from the edges of step 2 by circuits of vertex numbers.  
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Step 4: Choose a symmetry (either the full symmetry of the colonel, or any sub-

symmetry thereof). Although in principle it is possible to use any one, it suffices to 

consider the minimal ones only, if the facetings found are later on reconsidered with 

respect to their actual symmetry. In the set-up of this article it reduces to the chiral 

pyramidal ones.  

Step 5: Apply new labels to classes of symmetry-equivalent vertices.  

Step 6:  Apply new labels to classes of symmetry-equivalent edges.  

Step 7: Apply new labels to classes of symmetry-equivalent faces (of any kind) from  

step 3.  

Step 8: Specify extra symmetry-operations which would transform to be found facetings 

into ones which describe (essentially) the same polyhedron (for instance central 

inversion for axial sub-symmetries; as the faceting would be considered the same 

whether it will be positioned top up or top down; or extra mirrors for chiral sub-

symmetries which would identify enantiomorph pairs).  

Step 9: For each extra symmetry of step 8 set up a bijection of labels for the face-classes 

of step 7 which would be transformed into one another.  

Step 10: Having enumerated the face-classes (step 7, call their total count f) use now bits 

for representation of each single class, and use binary numbers as representation for any 

set of those classes: i.e. 2^(1-1)=1=00001, 2^(2-1)=2=00010, 2^(3-1)=4=00100 etc. 

describes the first, second, third etc. of say f=5 possible classes alone, and further 

9=01001 would thus describe the union of classes numbered 1 and 4. This will leave us 

with a range of (2^f)-1 binary numbers for all combinations of face-classes. The -1 is 

applied as the binary number 0=00000, which would denote no face-class being selected 

at all, and which clearly can be omitted.  

Step 11: Set up a class relation between the edge-classes of step 6 and the face-classes of 

step 7: For each member of a specific edge-class there is some number of incident faces, 

which belong to some face-classes: either 0 or 1 or 2. To each other member of that 

same edge-class belong some other incident faces, but the corresponding numbers are 

still the same as before.  
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Step 12: For each binary number from the appropriate range of step 10 evaluate for each 

edge-class the count of those face-classes which lie in the intersection of the set of face-

classes attributed to that given edge-class by the relation of step 11 on the one hand, and 

of the set of face-classes described by that binary number on the other hand. Therefore 

the evaluation count of that algorithm would amount to c=((2^f)-1)*e incidence 

evaluations, were e is the count of edge classes and f the count of face classes.  

Remark: Note that the range f is the most crucial one with respect for the count c. The 

highest it gets is for the regiment of the great dirhombicosidodecahedron i.e. Miller's 

monster. Then additional investigations such as a splitting into well-chosen sub-cases 

had to be applied in order for the task to remain manageable.  

Step 13:  Mark any binary number of the range of step 10 as valid, iff all evaluations of 

step 12 yield either "0" (no face incident to that edge) or "2" (exactly 2 faces incident to 

that edge).  

Step 14: List all valid numbers together with their reverse interpretation i.e. face classes.  

Step 15: Reduce that list from all entries which are either to be identified by the 

bijections of step 9, or are unions from other entries (i.e. compounds of more elementary 

facetings), or were already given within the corresponding list for a higher symmetry.  

Remark: The remaining entries are all the different (in sense of step 8) edge-facetings of 

the colonel which have a specific symmetry (chosen at step 4).   

Addendum: The specific set-up of these steps (esp. step 3) makes it very easy to get for 

any derived edge-faceting the set of used faces, each in terms of vertex-numbers. Those 

numbers are requested by the program Hedron in the input files to produce VRML 

graphics of those facetings. Best results are produced, if all unused faces are listed in the 

corresponding input files as well, just marked to be "blind" faces. (Those blind faces are 

used by the software while iterating the polyhedron to its final form, but are not be given 

in the final face list in the VRML-export.)  

The nomenclature of edge-facetings used in this article and the webpage is the name of 

the colonel followed by the counts of faces in the order given in the next table. If 

required it is followed by some version extension in the order they were derived. 
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Exemplified Application 

Often it is much more enlighting to see some algorithm in action than just giving it mere 

abstractly. So it will be applied here to the small stellated dodecahedron (sissid) in the 5-

fold symmetry.  

Step 1: The convex hull of sissid is the icosahedron (ike). So it has 12 vertices. Here they 

will be numbered hexadecimal: 1 at the top, 2 through 6 running around the upper 

hemisphere, and the other ones being the complements to 13 for each opposite pair of 

vertices.  

Step 2: In this arrangement the 30 edges of sissid, which are the extended edges of the 

dodecahedral kernel, can be described as the following hexadecimal pairs (vertices 

given in ascending order): 17, 18, 19, 1a, 1b, 24, 25, 27, 2a, 2c, 35, 36, 39, 3b, 3c, 46, 

48, 4a, 4c, 57, 59, 5c, 68, 6b, 6c, 79, 7a, 8a, 8b, 9b.  

It should be mentioned nevertheless that this numbering with hexadecimal base was 

chosen in the article just for notational reasons, but Hedron is not able to accept 

characters for numerical reasons, as it uses already characters to give additional advises 

to the program.  

Step 3: The faces of sissid are 12 pentagrams. They will be given by hexadecimal 

pentuples in the sequence as the vertices are aligned by edges. Thus those circuits are 

cut open and oriented such that the smallest possible hexadecimal number appears. They 

are: 17248, 1753b, 18639, 1952a, 1a46b, 24635, 2793c, 2a86c, 3b84c, 4a75c, 59b6c, 

79b8a.  

The vertex figure of the sissid is a regular pentagon. Its vertices can be joined 

alternatingly as well, resulting in a pentagram, scaled with respect to the former by the 

golden ratio number tau = 2 cos(36°) = (1+√5)/2 ≈ 1.618034. Those larger lines of the 

vertex figure correspond to triangular faceting faces, connecting for instance the top 

vertex with the lower hemispherical pentagram. There are 20 such triangles, which, 

taken alone, make up the great icosahedron (gike). Denotation alike the former faces 

give: 179, 17a, 18a, 18b, 19b, 24a, 24c, 257, 25c, 27a, 359, 35c, 36b, 36c, 39b, 468, 

46c, 48a, 579, 68b.  

Step 4: As mentioned above the 5-fold (chiral) pyramidal sub-symmetry is chosen.  
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Step 5: Under the symmetry chosen in step 4 vertices fall obviously into 4 classes. 

Names for edge classes follow the systematic: alphabetical enumerator for the class, 

number for the order of rotational symmetry, “1” for vertex. We have:   

A51  = {1},  

B51  = {2, 3, 4, 5, 6},  

C51  = {7, 8, 9, a, b},  

D51  = {c}. 

    
siid-6-10-10-6-d gidrid-24-60-10-v1 raded-5-10-1-5 srid-10-10-10-10 

Step 6: Under the symmetry chosen in step 4 edges fall into 6 classes: those incident to 

vertex 1, those of the upper hemispherical pentagram, those connecting upper and lower 

hemispherical vertices excluding the polar ones (these falling into 2 enantiomorph 

classes), those of the lower pentagram, and those incident to c. Names for edge classes 

follow the same systematic as in step 5, with a final “2” for edge. Enantiomorph classes 

are given the same character, getting distinguished instead by a final prime. Thus we 

have:  

A52  = <A51, C51>  = {17, 18, 19, 1a, 1b},  

B52  = <B51, B51>  = {24, 25, 35, 36, 46},  

C52  = <B51, C51>|type1  = {27, 3b, 4a, 59, 68},  

C52’  = <B51, C51>|type2  = {2a, 39, 48, 57, 6b},  
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D52  = <C51, C51>  = {79, 7a, 8a, 8b, 9b},  

E52  = <B51, D51>  = {2c, 3c, 4c, 5c, 6c}. 

Step 7: Applying the same principle to the faces with final “3” for triangles respective 

“5” for pentagrams we get:  

A53  = <A51, 2x C51>  = <2x A52, D52>  = {179, 17a, 18a, 18b, 19b},  

B53  = <2x B51, C51>  = <B52, C52, C52’> = {24a, 257, 359, 36b, 468},  

C53  = <B51, 2x C51>  = <C52, C52’, D52> = {27a, 39b, 48a, 579, 68b},  

D53  = <2x B51, D51>  = <B52, 2x E52>  = {24c, 26c, 35c, 36c, 46c} 

A55  = <5x B51>   = <5x B52>   = {24635} 

B55  = <A51, 2x B51, 2x C51>  = <2x A52, B52, C52, C52’>  

= {17248, 1753b, 18639, 1952a, 1a46b} 

C55  = <2x B51, 2x C51, D51>  = <C52, C52’, D52, 2x E52>  

= {2793c, 2a86c, 3b84c, 4a75c, 59b6c} 

D55  = <5x C51> = <5x D52>   = {79b8a}  

Steps 8 & 9: As given in the algorithm this is the central inversion, interchanging A53 

and D53, B53 and C53, A55 and D55, B55 and C55. Additional mirrors (containing the 

axis of symmetry) have not to be considered, as although enantiomorph edges do exist, 

the face classes are all automorph with respect to this kind of symmetry.  

Step 10: In step 7 we got 8 classes of faces, i.e. f = 8. So we will need 8 bits for 

representation. Use A53 = 10000000 = 128, B53 = 01000000 = 64, C53 = 00100000 = 

32, D53 = 00010000 = 16, A55 = 00001000 = 8, B55 = 00000100 = 4, C55 = 00000010 

= 2, D55 = 00000001 = 1. Any dual number of 8 bits thus represents a 5-fold symmetric 

collection of corresponding faces.  

Step 11: Face classes, incident to the edge classes, are: 

A52: 2x A53, 2x B55 

B52: B53, D53, A55, B55 

C52: B53, C53, B55, C55 

C52’: B53, C53, B55, C55 

D52: A53, C53, C55, D55 

E52: 2x D53, 2x C55 

We see that e = 6. But as faces disallow chirality classes C52 and C52’ could be unified, 

and thereby reduce this count.  

Step 12 & 13: Corresponding to the relations of step 11 we have 6 (or rather 5) 

functions defined for the set of numbers 1 = 00000001 till 255 = 11111111: 

f_A52(x) = 2x bit 1 + 2x bit 6 
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f_B52(x) = bit 2 + bit 4 + bit 5 + bit 6 

f_C52(x) = bit 2 + bit 3 + bit 6 + bit 7 = f_C52’(x) 

f_D52(x) = bit 1 + bit 3 + bit 7 + bit 8 

f_E52(x) = 2x bit 4 + 2x bit 7 

Numbers are considered to be valid iff each of those functions evaluate either to 0 or 2. 

Step 14+15: Valid are the 14 numbers:  

00001111  = 15  = A55 + B55 + C55 + D55 = sissid-12-0 = sissid 

00011000  = 24  = D53 + A55   (inverse to 129) 

00100010  = 34  = C53 + C55   (inverse to 68) 

00101101  = 45  = C53 + A55 + B55 + D55 (inverse to 75) 

00110101  = 53  = C53 + D53 + B55 + D55 (inverse to 202) 

01000100  = 68  = B53 + B55   = sissid-5-5 

01001011  = 75  = B53 + A55 + C55 + D55 = sissid-7-5 

01101001  = 105  = B53 + C53 + A55 + D55 = sissid-2-10 = 5/3-antiprism 

01110001  = 113  = B53 + C53 + D53 + D55 (inverse to 232) 

10000001  = 129  = A53 + D55   = sissid-1-5 = 5/2-pyramid 

10011001  = 153  = A53 + D53 + A55 + D55 (compound of 24 and 129) 

11001010  = 202  = A53 + B53 + A55 + C55 = sissid-6-10 

11101000  = 232  = A53 + B53 + C53 + A55 = sissid-1-15 

11110000  = 240  = A53 + B53 + C53 + D53 = sissid-0-20 = gike 

Numbers 15 and 240 are icosahedral, number 105 has antiprismal symmetry, the 

remaining 5 are of (full) pyramidal symmetry.  

The names in the fourth column just as those in the figures spread over the article are 

concatenations of the name of the colonel plus the counts of faces of different shapes 

aligned with increasing edge angle. If needed an additional isomer count is given at the 

end. 

Statistics 

From the given table of regiments those entries with 3 edges per vertex are trivial. There 

will be no further edge-faceting than the polyhedron itself. The other empty entries are 

snubs. A short analysis in the sense of step 3 applied to the snubs shows that only the 

gisdid allows additional faces (being itself a chiral edge-faceting of gidrid). For all other 

snubs the regiment is again trivial, even in its sub-symmetrical sense. The remaining 16 

regiments are considered below explicitly. Only non-compound ones are listed in the 

last column. 
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Colonel Possible faces Symmetry of the 
facetings 

e *) f *) c *)
 

Count of facetings **) 

oct 8 triangles,  
3 squares 

octahedral 
4-fold  
- pyramidal 
3-fold 
- tetrahedral 

1 
3 
 
4 

1+1 
2+2 
 
4+1 

3 
45 

 
124 

1 (oct) 
 
1 (4pyr) 
 
1 (thah) 

co 8 triangles,  
6 squares,  
4 hexagons 

octahedral 
4-fold 
3-fold 
- pyramidal 

1 
6 
8 

1+1+1 
2+3+1 
4+2+2 

7 
378 

2,040 

3 (co, oho, cho) 
0 
 
2 (for inst.: 3cup) 

sirco 8 triangles,  
18 squares,  
6 octagons 

octahedral 
4-fold 
- prismatic 
- pyramidal 
3-fold 
- pyramidal 

2 
12 
 
 
16 
 

1+2+1 
2+6+3 
 
 
4+6+2 

30 
24,564 

 
 

65,520 

3 (sirco, socco, sroh) 
 
3 (for inst.: 8p=op) 
4 (for inst.: 4cup=J4, J19) 
 
2 

gocco 6 octagrams,  
8 triangles,  
6 squares 

octahedral 
4-fold 
- prismatic 
- pyramidal 
3-fold 
- pyramidal 

2 
12 
 
 
16 

1+1+2 
3+2+6 
 
 
2+4+6 

30 
24,564 

 
 

65,520 

3 (gocco, querco, groh) 
 
3 (for inst.: 8/3-p = stop) 
4 (for inst.: 4/3-cup) 
 
2 

ike 20 triangles, 
12 pentagons 

icosahedral 
5-fold 
- antiprismatic 
- pyramidal 
3-fold 
- antiprismatic 
- pyramidal 

1 
6 
 
 
10 

1+1 
4+4 
 
 
8+4 

3 
1,530 

 
 

40,950 

2 (ike, gad) 
 
1 (5ap = pap) 
5 (for inst.: 5pyr=J2, J11) 
 
2 
3 (for inst.: J63) 

id 20 triangles, 
12 pentagons, 
6 decagons 

icosahedral 
5-fold 
- pyramidal 
3-fold 
- pyramidal 

1 
12 
 
20 

1+1+1 
4+4+2 
 
8+4+2 

7 
12,276 

 
327,660 

3 (id, sidhid, seihid) 
 
2 (for inst.: J6) 
 
2 

srid 20 triangles, 
30 squares, 
12 pentagons, 
12 decagons 

icosahedral 
5-fold 
- antiprismatic 
- pyramidal 
3-fold 
- antiprismatic 
- antiprismatic 

2 
24 
 
 
40 

1+1+1+1 
4+6+4+4 
 
 
8+10+4+4 

30 
6,291,432 

 
 

2,684,354,52
0 

3 (srid, saddid, sird) 
 
3 (for inst.: J80) 
10 (for inst.: 5cup=J5, J76) 
 
3 
11 (for inst.: J83) 

sidtid 12 pentagrams, 
20 triangles, 
30 squares, 
12 pentagons 

icosahedral 
5-fold 
- antiprismatic 
- pyramidal 
3-fold 
- octahedral 
- antiprismatic 
- chiral    
  antiprismatic 
- chiral 
tetrahedral 
- pyramidal 
- chiral pyramidal 

1 
12 
 
 
20 

1+1+1+1 
4+4+6+4 
 
 
4+8+10+4 

15 
3,145,716 

 
 

1,342,177,26
0 

3 (sidtid, ditdid, gidtid) 
 
7 
46 (for inst.: 5/4-, 5/2-cupid) 
 
1 (cube) 
6 
 
6 
1 ***) 
72 
12 

siid 12 pentagrams, 
20 triangles, 
20 hexagons, 
12 decagons 

icosahedral 
5-fold 
- pyramidal 
3-fold 
- pyramidal 

2 
24 
 
40 

1+1+1+1 
4+4+4+4 
 
4+8+8+4 

30 
1,572,840 

 
671,088,600 

3 (siid, sidditdid, siddy) 
 
6 
 
6 

sissid 12 pentagrams, 
20 triangles 

icosahedral 
5-fold 
- antiprismatic 

1 
6 
 

1+1 
4+4 
 

3 
1,530 

 

2 (sissid, gike) 
 
1 (5/3-ap=starp) 
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Colonel Possible faces Symmetry of the 
facetings 

e *) f *) c *)
 

Count of facetings **) 

- pyramidal 
3-fold 
- antiprismatic 
- pyramidal 

 
10 

 
4+8 

 
40,950 

5 (for inst.: 5/2-pyr) 
 
2 
3 

did 12 pentagrams, 
12 pentagons, 
10 hexagons 

Icosahedral 
5-fold 
- pyramidal 
3-fold 
- pyramidal 

1 
12 
 
20 

1+1+1 
4+4+2 
 
4+4+4 

7 
12,276 

 
81,900 

3 (did, sidhei, gidhei) 
 
2 
 
2 

raded 12 pentagrams, 
30 squares, 
12 pentagons, 
20 hexagons 

icosahedral 
5-fold 
- antiprismatic 
- pyramidal 
3-fold 
- antiprismatic 
- pyramidal 

2 
24 
 
 
40 

1+1+1+1 
4+6+4+4 
 
 
4+10+4+8 

30 
6,291,432 

 
 

2,684,354,52
0 

3 (raded, ided, ri) 
 
2 
12 
 
4 
12 

gidditdid 20 triangles, 
12 decagrams, 
12 pentagons, 
20 hexagons 

icosahedral 
5-fold 
- pyramidal, 
3-fold 
- pyramidal 

2 
24 
 
40 

1+1+1+1 
4+4+4+4 
 
8+4+4+8 

30 
1,572,840 

 
671,088,600 

3 (gidditdid, giid, giddy) 
 
6 
 
6 

gid 12 pentagrams, 
20 triangles, 
6 decagrams 

Icosahedral 
5-fold 
- pyramidal 
3-fold 
- pyramidal 

1 
12 
 
20 

1+1+1 
4+4+2 
 
4+8+2 

7 
12,276 

 
327,660 

3 (gid, gidhid, geihid) 
 
2 
 
2 

gaddid 12 pentagrams, 
20 triangles, 
12 decagrams, 
30 squares 

icosahedral 
5-fold 
- antiprismatic 
- pyramidal 
3-fold 
- antiprismatic 
- pyramidal 

2 
24 
 
 
40 

1+1+1+1 
4+4+4+6 
 
 
4+8+4+10 

30 
6,291,432 

 
 

2,684,354,52
0 

3 (gaddid, qrid, gird) 
 
3 
10 (for inst.: 5/3-cup) 
 
3 
11 

gidrid 24 pentagrams, 
160 triangles, 
60 squares 

icosahedral 
- full icosahedral 
- chiral  
  icosahedral 
5-fold 
- antiprismatic 
- chiral  
  antiprismatic 
- rotation-reflectiv  
  ****) 
- pyramidal 
- chiral pyramidal 
3-fold 
- with 24 {5/2} 
- without {5/2} 

4 
 
 
 
48 
 
 
 
 
 
 
 
80 

2+4+1 
 
 
 
8+32+12 
 
 
 
 
 
 
 
8+56+20 

508 
 
 
 

2.16173 e+17 
 
 
 
 
 
 
 

1.54743 e+27 

 
1 (gidrid) 
 
1 (gisdid) 
 
15 
 
9 
 
120 
10 
250 
 
117,798 *****) 
2 (oct, thah) 

*) see step 12 for those numbers; e and f being the counts of symmetry-different edge resp. face classes, c 

being the total evaluation count.  Numbers e and f are chosen as for the least, i.e. the chiral pyramidal 

symmetry; all facetings with higher symmetry will thereby detected too. 

**) Only non-compound facetings are counted. Chiral pairs are counted just once. Numbers are given as NEI: 

not elsewhere included (a term coined by N. Johnson). The suffixes –pyr, -cup, -cupid stand for pyramid, 

cupola, and cuploid. J## are the numbers of the Johnson solids. 

***) This one is displayed above as sidtid-0-8-12-0-b. 

****) This is an other rather rarely mentioned symmetry. Alike the chiral antiprismatic one it is a chiral axial 

symmetry. They are easily opposed by an investigation from the side: 

… a – b – c – a – b – c …    … a – b – c – a – b – c … 

… – c – a – b – c – a – …     rotation-reflection … c – b – a – c – b – a … chiral antiprismatic 
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*****) That huge number is neither further analysed nor pictures are provided. For all other edge-facetings 

VRMLs are given at the webside, and for all but the 2 other larger groups of that colonel, JPEGs are shown 

too.  

Count management 

A short look on the huge count numbers c of the last table at gidrid (also called: Millers 

monster) shows the extent of this research. If you could set up a computer aided research 

which would run approximately 1 million combinations of step 10 per second, in the 5-

fold case you thus would have to run your computer 140 years of pure calculation time! 

This clearly would be impossible to wait for in one human life span. For the 3-fold case 

the problem is even worse, it would amount to 6 x 10
11

 years, neglecting the slightly 

increased count of edge classes. Using further the time scale back to the big bang 

(Hubble time), the pure calculation time would thus be 47 times as large … - So it 

should be obvious that some additional information has to be used in order to get that 

monster done. 

The first possible reduction amounts in a factor of 2
7
 for both the 5-fold and the 3-fold 

cases. These can be achieved by the investigation of the vertex figure. That figure shows 

that either both possible incident pentagrams have to be chosen simultaneously at a 

vertex or none. Now, using this information and forwarding it from vertex (-class) to 

vertex (-class), one comes to see that all pentagrams have to lie in just a single face 

(meta-) class. 

Next reductions can be achieved by splitting into cases with or without pentagrams. If no 

pentagrams are used, the remaining face classes split right into 4 disconnected sets in the 

5-fold case, respectively 8 disconnected sets in the 3-fold set. As compounds are to be 

excluded from the research it will be enough to apply the algorithm to those much 

smaller sets separately instead. The actual f-counts are 4 times 0+8+3 (5-fold) 

respectively 6 times 0+8+3 plus 2 times 0+4+1. 

For the other part, i.e. those edge-facetings of gidrid which incorporate pentagrams, the 

splitting is again the same as before, only that those split groups of classes are 

reconnected via the pentagrams. Thus in this case one does not have to look for separate 

closed solutions in each separated set; one will have to look instead for such solutions in 

each part which leave the pentagrammic edges unclosed. The final solutions will then be 

obtained from the set of combinations of one partial solution each, which are added to 
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the 24 pentagrams. And again, as said in the algorithm, that set of combinations has to 

be reduced from symmetry equivalencies or remaining compounds finally. 

NOTES 
 

J. Bowers acronyms: see http://members.aol.com/hedrondude/polyhedra12.html (and followings) 

Colonel, Regiment: see http://members.aol.com/Polycell/glossary.html  

Edge-facetings, providing the complete set of pictures as JPEG (3 views each) and VRML (interactive): see 

http://www.polyhedrix.de/e_klintro.htm , produced by the author, hosted by U. Mikloweit. (The 

labelled pictures of this article are inverse gray-scalings from rather few of those JPEGs.) 

Hedron software by J. McNeill, used to produce the VRMLs (the JPEGs being produced as screenshots 

thereof): see his article this publication or at http://web.ukonline.co.uk/polyhedra/hedron.html  

“Uniform polyhedra”: article by H. S. M. Coxeter, M. Longuet-Higgins, and J. Miller, in: Philosophical 

Transactions of the Royal Society of London, Ser. A 246: pp.401-450., (1954). 

 


