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ABSTRACT

Two 1D sequences are discussed, which prove to have vanishing BRAGG intensities with
respect to k = 0, olthough their limit translational modules are not empty. A 3D embedding
is given as well, in order to understand this phenomenon from the cut-and-project scenario.
Both sequences can be interpreted as cross-sections of 2D 7-fold resp. 14-fold tilings. One of
these possesses local perfect matching rules.

1. Introduction

Recently, a 14-fold tiling with perfect matching rules was discussed!. It seemed to be
somehow accademical, for its scaling factor is no PISOT-VIJAYARAGHAVAN (PV) number
(algebraic conjugates of modulus > 1 do exist). But a deeper insight into this example
results in rather unexpected findings, given below. For simplicity, let us start in 1D. To
show various aspects we handle two different examples at the same time. A broader outline
will be published elsewhere?.

2. Two 1D Substitutions

First, we define ¥ = 1 + 2cos(27/7), n = 1 + 2cos(x/7), and A = 5 — 1, the maximal
roots of the minimal polynomials mgy = 2® — 22> —x + 1, m, = 2® — 42? + 3z + 1, and
my = 2®—2?—2z+1. Since n = ¥’ =9 and ¥ = n? —27 it is obvious that Z[¥] = Z[n] = Z[)].
Only 9 is a PV number. Now, we consider the substitutions oy : L—LMTL, M— LS,
S—MS, L-LMI, M—SMTL, S—SM; o2 : L-IM, M—L3, S—M, T-ML, M—ST, S—M.
Thus, XY = YX and ¥ = X VX, Y. The summary composition matrices read within basis
{L, T, M, M,S,5}:

111000 011000
110100 100100
_ 100110 . 100001

M, = or11001 |> M, = o10010 |- (1)
000110 000100
001001 001000

Mj is primitiv, M; only irreducible. The characteristic polynomials P, = m,, - (2° — 2 + 1),
Py = my - (2% 4+ 2 — 2z — 1) yield PERRON-FROBENIUS (PF) eigenvalues 5 resp. \; all PF
eigenvectors are (19,19,/\,)\,1,1)(t). We use |L| =9, M| = )\, |S| =1, [X] = |X| and get
lo1(X)] =7 [X], |o2(X)| = A [X]| VX.

2.1. Non-empty Limit Translation Modules

Words occure with fixed frequence within each infinite sequence. So we conclude that the
translation module <{t € R |3z : t + w, = w4, }>7 (w, denoting arbitrary sub-words of
length > r at position z and < ... >z the Z-span) contains at least the translations
lo?(w)|, n large enough and w = LMSL, LMT,TL, L resp. LSMML, LM ML, LSML, LML
LSL, LL, L, for these words do occure within o}*(X) resp. o7"(X) VX, m > 6. Moreover,
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they cover the sequences. Next, we have 9 = n(A—1) = A9 —1), A =n(d -2 +2) = X 1,
and 1 = p(—9 +2X — 1) = A(—=9 + A + 1). Hence, as the lengths |o}'(w)| redecompose
mutually to |¢?(X)|, they do so downto |L|, |M| and |S]; i.e., the translational modules of
lengths ||, more generally of n™|L| resp. A\"|L| are all Z[¥] (they can’t be larger). But all
sub-words w are found within |o?(w’)|, n appropriate and w’ one of the mentioned words.
This shows that the translational module is independent of r. Hence, the limit translation
modules (r—oc) are Z[J] as well. Esp., they do clearly not vanish.

2.92. The BRAGG Intensities

The previous step tells something about correlations and hence on the FOURIER module
(the support of possible BRAGG peaks), but it tells nothing about magnitudes of attached
intensities. These are considered now. Using the notation p{*) : DIRAC scatterer of n'"

approximant, z;n)(X, Y) : distance from first letter to j%* ¥ within 6™(X), 6 : PF eigenvalue
of the substitution matrix M, M™ = (mg?,)y)_x’y, we get as FOURIER transform

X - -
(ﬁi’("ll)(k))xl = (5)(1,)(2 Hoexp(—szP Z§p)(X1’X2)))X )
= 1,A2

mP)
(S et X)) @
X2,X3

n—1
’ (6X31X4 ].—.[ exp(ikaprz§p)(X3,X4))> : (ﬁ§7§4)(k))x ’
r=0

X3,X4

where p is to be choosen such that mg??X > 1 VX and é;; is the KRONECKER symbol. The

diagonal matrices reflect the demand that supp(pg))n( N C supp(p;fn)ﬂ)). The non-diagonal

matrix of phase shifts we denote by F,,(k). Here we get with « = exp(tk6™|X|) VX (6 = n?
resp. \?):

1+82m+83m2s Im+4m3s { Bm+tm2s Cm?2 0
1443m?2s Im+02m2s+04m3s {+2ms HAm?s 0 {2m
Fona(k) = 1 tm+2m?s £4+02ms  Pm?s PmPs Cm :
ms+4m? s2 2m3s2 s Ims+€2m2s2 fm2%s 1
0 ms s {ms m?s 1
ms 0 s Ims im2s 1

F2n72 ( k) — 0 1 4+ém 0 0

(3)

0 o 0

From the normalisation p°X)(k) = ptX)(k)/ Ty mg?)y, ie. pX)(0) = 1 Vn € N, follows?
that lim, p2¥)(k) = 0 whenever Abs(Fpnim)(k)- - F,u(k)) does not converge for every
finite m (Abs applies to the entries). On the other hand, using results of number theory,
we get: exp(1k0") converges iff 6 is a PV number (and additional assumptions on k). Neither

n? nor A? is such. Thus, all intensities of the infinite sequences vanish relative to k£ = 0.

2.8. High-dimensional Embedding

To understand this fact better we use the high dimensional embedding v} ~» vl = (v, V11,
..), where (...) are CARTESian co-ordinates: L" = (¢,—1,—X), M" = (\,9,1), ST =




(1,=A,9). Thus, we lift into (¢ + A — 1)Z®. The interior space has twice the dimension of
the physical space, it decomposes hence into a cross-product: The physical space scaling
factors of n = |oy(L)|/|L|, X = |oa(L)|/|L| transform into the scaling factors (20 + A)/9,
2—1,(2X = 1)/}), resp. (9 + A)/¥,1 — 9, (A — 1)/X); those are the roots of My, T€SP. M.
But,-being no PV numbers, only one component of the interior space will be contracted, as
in usual quasiperiodic cases, the other one gets larger! So, the <acceptance domains (AD)
must be unbounded. This does not contradict a finite density of sites in real space, if the
contracting space component gets thin enough. This shall be considered now:

2.4. Dimensions

Lifting the inclusion relations of the substitution rules into the contracting space com-
ponent we end with coupled iterated functions systems (CIFS) for that component of
the «windows» or <AD’s of the tiless. (Note, these terms are borrowed from the usual
quasiperiodic setup, where thus constructed domains prove to be AD’s for cut-and-project
scenario, but keep in mind the problems at boundaries!) In here, the scaling factor 6 is
the root smaller than one, therefore the (compact) attractors of the CIFS are unique. If we
look for the dimensions of these attractors, the coupling of the CIFS (the matrices M; are
at least irreducible and X is the mirror image of X) guarantees that the dimensions of the
windows are the same. Thus, by applying the HAUSDORFF (H) measure on the equations
for the attractors, we finally get

¢ (|6o]°M —1) =0, (4)

1 being the identity matrix, ¢ the vector of H-volums and D the H-dimension. By re-reading
this equation we observe that 1/]6p|” has to be the PF eigenvalue 0, i.e.,

D = —log 6/ log |6,|. (5)

This is true if no overlap exists. Else we use box counting dimension A and get D <
A < —lim, logZXm()??y/long]" = —logf/log|6y|. This yields numerical values of
Dy = 0.73675, resp. Dy < 0.72736. Thus, the attractors (themselves, not merely the
boundaries!) are CANTOR sets; i.e., the «windowss have no LEBESGUE interior, they con-
sist of boundaries only! Finally, by neglecting the term producing probable overlap, we
get a lower bound too: Dy > —log 7/log |6o] (7 : golden ratio).

3. Extension to 2D Tilings

Now we show that these two sequences are not of selfinterest only. Both are 1D cross-
sections of 2D tilings, built by triangles whose vertices belong to a regular heptagon. The
extension of o, was already preliminarily investigated by NISCHKE and DANZER! (ND)
and is hence out of the scope here. For the 2" we label the edges of triangle A with
(M, S,S), B with (L,S, M), C with (L,L,5), D with (L,M,M), and P with (L,M,S),
each in both enantiomers. Edge-tupels are to be read as circuits. The length of an’
edge is thus obvious, the tiles well-defined. As o, applies to the edges, it defines an
unique 2D decomposition. For convenience we give the summary rule too: ¥ A—{4, B},
B—{¢C, P,P}, C—{C,D,P}, D—{B,C,D,D}, P-{A,B,D}. The matrix (e.g. in the basis
{A,4,B,B,C,C, D, D, P,P}) is primitiv and its characteristic polynomial reads P = (z? +
z+ 1)*(2® + 2* — 22 — 1)(2® — 522 + 62 — 1); the PF eigenvalue is A2, the correspoding
eigenvectors are (1,1,9,9,7n,n, A, A, 9, 19)“), describing the relative frequencies as well as
the relative volumes of the tiles. But the directions X and X are antiparallel VX, hence
we get only 7-fold quasisymmetry. Le., its «AD» is the direct sum of a whole plane with a




7-fold fractal (empty interior!). The ND tiling yields an «ADs which is the sum of a plane
with a 14-fold fractal (without interior). The fractal components are depicted below, using
about 3000 lifted points. We embed into the lattice Ae.

In addition to the decompositions, composition rules do exist for both tilings. Moreover,
all of these procedures can be locally defined on bare tilings. The ND tiling posseses perfect
matching rules!. The other one definitively not.

Figure 1: To the left a lift of the ND tiling into the 1** internal component, to the right that of ¥ into
the 27¢ is shown. Lifts of oy resp. oy correspond to horizontal diametral cross-sections.

4. Conclusions

We have given two examples of non-PV substitutional sequences (resp. tilings). The non-
PV property implies the disappearance of the (non-trivial) BRAGG components of the
FOURIER spectrum. On the other hand the support of such peaks normally is given (via
PATTERSON) by the reciprocal of the limit translational module. Thus, our examples are
somehow counter-intuitiv, and show how few is known for general substitutional sequences.

Here, we have investigated the BRAGG part only. But it should be added that other
spectral researches conjecture the intensity measure of non-PV substitutional structures to
be purely singular continuous®.

Another remark to eq. (4): It provides an extension of the connection between volumes
in internal space and frequencies of occurence to non-integral dimensions.
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