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Perfect matching rules are derived for quasiperiodic triangular tilings with 10-, 12-,
and 8-fold symmetry. We use the composition/decomposition approach via local infla-
tion/deflation symmetry and emphasize the locality of our procedure: The matching
rules given here are formulated using certain decorations of the tilings. These decora-
tions turn out to be redundant, i.e., they are locally derivable from the undecorated
tilings. Hence, the latter are determined by perfect matching rules as well.

1. Introduction

The experimental discovery of quasicrystals with icosahedral symmetry! and, simul-
taneously or only a little later, with twelvefold,? tenfold,® and eightfold symmetry*
has not only established a new branch of solid state physics but also given an enor-
mous impact on the theory of tilings. The latter proves useful for the description
of quasicrystals>® and many examples have been worked out in detail.

Perhaps amongst the most fascinating properties of these ideal tilings are the ex-
istence of inflation/deflation symmetries — which are useful for finding a consistent
indexing scheme of the Bragg reflection peaks — and of matching rules that enforce
aperiodicity (in which case they are called strong) or specify uniquely a single local
isomorphism class (in which case they are called perfect), compare Ref. 7. Already
the well-known Penrose tiling (e.g., in its version with rhombi) exhibits both phe-
nomena: a deflation and an inflation is known that can be formulated locally, and
also perfect matching rules that make the two Penrose rhombi to an aperiodic set,
cf. p. 542f of Ref. 8. In the sequel, other tilings with perfect matching rules were
found, e.g., Refs. 9-13, and a hierarchy of matching rules has been formulated,
compare Refs. 14, 7, 15.

Obviously, tilings cannot be taken literally for pictures of the microstructure of
quasicrystals. Like unit cells in the crystalline case, they may provide a convenient
representation of the global order of a given structure which in turn may arise as a
decoration of a certain tiling. For such a quasicrystalline structure, several different
tilings may be equally well suited. This observation leads to the concept of mutual
local derivability!® which gives an equivalence condition for tilings and patterns in
a general context. In particular, quasiperiodic structures are covered therein.
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Roughly speaking, two given tilings are locally equivalent (symmetry preserving
mutually locally derivable, SMLD), if each of them can be reconstructed from
the other one just by inspection of patches up to a certain, a priori determined,
finite size. This notion immediately extends to equivalence of whole classes of
local isomorphism (LI classes). A tiling (or, more generally, a pattern) describes
the global order of a physical structure (e.g., a set of positions of atoms), if it is
locally equivalent to the latter. In view of this equivalence concept, one has to
distinguish sharply between tilings and certain decorations of them. In particular,
the formulation of the matching rules of the Penrose tiling mentioned above is
usually presented with the help of certain arrows placed at the boundaries of the
rhombi. It turns out that this decoration is locally equivalent to the undecorated
pattern (one has to inspect only the nearest and next to nearest neighbours of vertex
points). Therefore, also the LI class of undecorated Penrose tilings possesses perfect
matching rules. As a consequence it is possible to construct local interactions which
stabilize physical structures described — in the above sense — by Penrose tilings.

The situation is different in the case of the eightfold symmetric Ammann-
Beenker tiling!711:39:10 and the twelvefold symmetric Socolar tiling® or the locally
equivalent Niizeki-Mitani-Gahler tiling!®: perfect matching rules have been given in
the articles mentioned. They are formulated by means of certain decorations, but
the latter cannot be derived locally from the undecorated patterns in either case;
moreover, it has been shown that matching rules for the undecorated patterns do
not exist. In a recent publication,!® it is very confusing that there is no distinction
at all between decorated and undecorated patterns. This distinction is necessary
from the crystallographic point of view because the patterns belong to different
SMLD classes. So it remained an open problem to establish perfect matching rules
for natural undecorated tilings with eight- or twelvefold symmetry. Possible candi-
dates were known for some time!® but the connection to the matching rule problem
was realized only recently by the relation of the various tilings to those with known
matching rules in terms of local derivability.?%2! It is the main goal of this article
to establish perfect matching rules for certain undecorated patterns with twelvefold
and eightfold symmetry.

Before we continue, let us give a brief survey on how this article is organized.
The following section explains the techniques used to obtain such rules for the
triangular tilings 7, T,‘;?), and ’Tl(;?. Thereafter, Secs. 3-5 deal explicitly with
these patterns. In each case, local inflation/deflation rules are presented using lo-
cally derivable decorations. {Note that the existence of such local inflation/deflation
rules is a non-trivial property.) Either of our tilings can be derived by the projec-
tion method (cf. Ref. 23 and Appendices C and B of Ref. 19, respectively). We
use, as natural ansatz for matching rules, vertex configurations (with an additional
decoration which is shown to be locally derivable). Furthermore, these rules are
contracted to interactions of pairs of tiles by means of decorations of vertices and
edges.
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In particular, Sec. 3 deals with the tenfold symmetric triangle pattern 7.
(The basic definitions and properties of this tiling can be found in Refs. 22, 23.
Its relation to binary tilings with perfect matching rules will be discussed in a
forthcoming publication.?*) In Sec. 4, the analogous program is carried out for
the twelvefold symmetric triangular tiling 7, l(,laz) that has briefly been described
in Appendix C of Ref. 19. It will be shown additionally that this tiling contains
the local information of the undecorated Niizeki-Mitani-Gahler tiling?®2¢ and its
matching rule decoration,!® which comes as a little surprise. In the Appendix,
we describe a tiling with twelvefold symmetry which allows the local derivation of
matching rules also from the set of vertex sites alone. Section 5 is the obvious
application of the same technique to the eightfold symmetric triangular tiling Tl(;?,
compare Appendix B of Ref. 19. It turns out that this tiling contains the complete
local information of the Ammann-Beenker pattern!! including its matching rule
decorations, cf. p. 556f of Ref. 8. It thus resembles the situation of Sec. 4. This
discussion is followed by some concluding remarks in Sec. 6.

2. The Techniques

Before we present the explicit examples we will briefly describe the methods used.
We follow those outlined on pages 558ff of Ref. 8. They are used in Refs. 10, 18
too.

Let 7 be a tiling in n-dimensional space. An R-patch (R > 0) of 7 surrounding
a point ¢ is the set of all elements of 7 which intersect the R-ball around ¢. (For
R = 0, this set consists of those tiles which cover ¢ in an inner part or within any
lower-dimensional boundary.) Two tilings 7; and T; are said to be locally isomorphic
(with respect to Euclidean motions) if, for arbitrary R > 0, every R-patch of 7; can
be transformed into an R-patch of 7 by a Euclidean motion, and vice versa. (As
is well-known, this does not imply the existence of a motion which brings the two
tilings to global coincidence.) The set of all tilings that are locally isomorphic to
a given tiling 7 is called the local isomorphism (LI) class of 7. For most physical
applications, it is reasonable to consider the members of an LI class as equivalent.

The definition of LI classes involves the inspection of patches of finite, but ar-
bitrary size. Of special interest are those LI classes which can be determined using
only patches of a fixed finite size, i.e., which possess perfect matching rules. For-
mally, a matching rule with radius R, is a list of Ry,-patches; a tiling 7 fulfills
this rule if every Rm.-patch of 7 can be found in the given list. Such a matching
rule is said to be perfect if there exists a tiling fulfilling it and if, on the other hand,
all tilings which fulfill it belong to the same LI class of tilings.

To decide whether some given matching rule is perfect is a fairly complicated
problem, compare Ref. 15. The situation is much simpler in the case where the LI
class of tilings under consideration possesses an inflation/deflation symmetry. This
means that there is a similarity transformation © of dilation factor 4 > 1 such that
for some (and therefore every) element 7 of the LI class there exists an element
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IT of the LI class of ©T which is locally equivalent to T (i.e., belongs to the same
SMLD class as 7, cf. Ref. 16). The local equivalence of 7 and ZT means that
IT is locally derivable from 7 and vice versa. In practice, this inflation and the
converse deflation are defined locally by means of composition and decomposition,
respectively. This locality demands the existence of a radius Ry such that for every
Euclidean motion S and every point ¢ the identity of the Rj-patches (around g¢)
of T and ST implies identity of the 0-patches (around ¢) of ZT and SZT, and
the existence of a radius Rp which provides the analogous relation interchanging
T and IT. A consequence of this condition is that every (R + Ry)-patch in T
uniquely determines the R-patch around the same point in IT, as well as every
(R+ Rp)-patch in ZT uniquely determines the corresponding R-patch in 7.

Now, let us assume that we are given a certain LI class represented by a member
7o, e.g., obtained by the well-known projection method from a higher-dimensional
periodic structure. In particular, we assume that 7, is repetitive (as is always
guaranteed for tilings generated by projection!®?7). Every matching rule satisfied
by 7y is characterized by its radius Ry, and consists of the set of all R,,,.-patches
of Ty. Let us denote, by the symbol {7} g, the class of all tilings with the property
that for a fixed R every R-patch of them can be found in Ty (i.e., can be transformed
into an R-patch of 7y by Euclidean motions). Because of the repetitivity of 7y, its
LI class is precisely the intersection of all {To}gr, R > 0. (Obviously, R’ > R
implies {To}r' € {Zo}r-) In order to show that the LI class of 7 is determined
by a matching rule with radius R,,,, it suffices to show that for every element 7
of the class {To}r,,, it is true that every R-patch of 7 can be found in Tg, ie.,
{To}r., € {To}r (R > 0). This can be achieved if 7y has an inflation/deflation
symmetry as explained above which fulfills some additional properties. First, the
mapping I (the inflation transformation) must be extendable from the LI class
to the whole class {Zo}g,,, such that for every two elements 7; and 75 of this
latter class, every point ¢, and every Euclidean motion S, an identity of the R;-
patches around ¢ of 7; and S7; implies an identity of the corresponding 0-patches
in IT; and STT;. Second, the inverse D of Z (the deflation transformation) fulfills
the analogous condition with replacing Ry by Rp and Ty by ©7; additionally, the
relation Ry, > (9/(9—1))Rp must hold. And third, the inflation transformation Z
must map {7} r,,, into {©T}yr,.,. The last condition is the nontrivial one whereas
the other ones can be achieved for every inflation/deflation symmetry (having local
transformations) for suitable radii Rp, Ry, and R,,,.

If these three conditions are fulfilled, the fact that the LI class of 7Ty is determined
by a matching rule with radius R,,, is seen as follows. Let 7 be an element of
{0} .., Given the radius R and a point ¢ arbitrarily, we have to find the R-patch
(around ¢) of 7 in 7;. We may choose n such that R, > R/9" + (9/(9 — 1))Rp,
then, 9" By > R+ Z::ol ¥*Rp. The third condition implies that the ¥” R,,,-patch
around ¢ of Z*7 can be found in Z"7,, with motion S, say. Successive application
of the second condition shows that the R-patch around ¢ of T can be found in 7p
using the same motion S.
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In summary, one has proved a certain matching rule to be perfect for a given
repetitive LI class of tilings if one has shown the following conditions to hold:

e There is a local inflation T for the given LI class which can be extended to the
class of all tilings fulfilling the matching rule.

o There is a local deflation D which is the inverse of 7 and is also extendable to
the class of all tilings fulfilling the matching rule; the matching rule radius must
obey the inequality mentioned above.

o The properly rescaled matching rule is fulfilled by the inflated tilings.

In order to present explicit inflation/deflation transformations, things become
simpler if the deflation radius Rp vanishes. Therefore, it is convenient to decorate
these tiles in a suitable way, e.g., by arrows (as in the following sections), in order
to remove ambiguities in the deflation of tiles; the matching rules we will formulate
will apply only to the set of decorated tiles. In all three examples to follow the
decorated tilings do belong to the same SMLD class, wherefore the existence of
matching rules will be proved automatically also for the undecorated tilings.

3. The Decagonal Case

Let us start now with the decagonal tiling of the plane by the two golden triangles
which can be derived from the four-dimensional root lattice A4 by dualization and
projection®?; the LI class of these tilings will be denoted by T3, The structure of
the four-dimensional lattice provides a transformation which manifests itself as a
rescaling by 1/7 = %(\/g — 1) in the two-dimensional tiling space and results in a
proper decomposition of the tiles into rescaled copies. One finds that for both the
acute and the obtuse triangle two different decompositions occur. This ambiguity
can be removed by the introduction of arrows which indicate the decomposition of
a given tile according to Fig. 3.1.

P A\ N

Fig. 3.1. Local deflation rules for the tenfold symmetric triangle tiling T:‘ .
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By a closer inspection of the acceptance domains,?3 it is easily checked that the
decoration of the rescaled triangles is forced by the global transformation men-
tioned above. Furthermore, the acceptance domains of the decorated triangles can
be calculated. By the usual methods, one obtains the list of decorated vertex config-
urations that will occur in the decorated tiling as generated with the new acceptance
domains; these configurations are found in Fig. 3.2. That the relation between dec-
orated and undecorated tilings is a local equivalence, can be established using the
rule for the derivation of the decorations depicted in Fig. 3.3. It can be shown that
for every tiling of the LI class of 7§, this rule completely determines the decoration
of all tiles. (The other direction is trivial, just erase all arrows.)

Now, having shown the local equivalence between decorated and undecorated
tilings, we can restrict ourselves to the consideration of the decorated ones in order
to establish perfect matching rules there. More specifically, we will show that every
tiling of the plane consisting of decorated golden triangles such that the vertex
configurations which occur can be found in Fig. 3.2 will belong to the LI class of
tilings obtained by decoration of tilings of 7§, according to Fig. 3.3.

Fig. 3.2. The decorated vertex configurations of 7, .
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For short, let us call regular the vertex configurations of Fig. 3.2, as well as decorated
tilings containing only such configurations.

Fig. 3.3. Local decoration rules for 7;‘;‘4 .

We have already established the existence of a local deflation transformation with
Rp = 0. The inverse inflation transformation can be formulated as follows.

éﬁ ) Z

éﬁ ) A

Fig. 3.4. Local inflation rules for T}’;‘.
A short glance at the vertex configurations in Fig. 3.2 shows that in a regular tiling
every obtuse triangle is surrounded in one of the two manners depicted on the left
side of Fig. 3.4. It is easy to see that the composition rule indicated in Fig. 3.4 can be
applied everywhere in any regular tiling without contradiction and indeed provides
the inverse transformation of the above deflation rule. Furthermore, the result of
such an inflation of a regular tiling will be a face-to-face tiling with vertex points

only in positions of vertex points of the original tiling. According to the general
remarks in Sec. 2, it remains to be shown that the inflation of a regular tiling leads
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to a regular tiling. The vertex configurations 1-7 are readily seen to inflate only
into regular vertex configurations. However, for configurations 8 and 9, there is,
in each case, one possibility of inflation which yields an irregular configuration (if
there is no additional information from the surrounding). Nevertheless, at least
all configurations in the inflated tiling where an arrow points towards the central
vertex must be from the list of regular configurations. A bit of combinatorics shows
that a patch as depicted in Fig. 3.5 will not arise by inflation.

Fig. 3.5. An example for an irregular patch.

Only the irregular possibilities for 8 and 9 contain such patches. We see that the
inflation of an infinite regular tiling cannot produce irregular vertex configurations
and thus delivers a regular tiling. This proves the existence of a perfect matching
rule with radius R,,, = 0. (Strictly speaking, for the argument explained in Sec. 2,
we have to choose the radius slightly larger than 0, but, afterwards, as only vertex
configurations matter, we may reduce the radius to 0.)

As a bonus of the projection method, the list of occurring decorated vertex con-
figurations has provided, in quite a natural way, candidates for a matching rule. The
formulation of deflation and inflation as rules that relate to single (decorated) tiles,
makes it advantageous to have the matching rules in an analogous form. Honestly,
we have to say that we do not have a general method of how to condense these rules
into the form of simple decorations of the edges and vertices of tiles. Here we start
with the observation that every vertex configuration will end after a finite number
of deflations in the configuration with the number 9 in Fig. 3.2. If one allows only
even-numbered steps of deflation, the orientation of this configuration will never
change afterwards. The decoration of this limit configuration is now translated into
a vertex decoration. One can therefore introduce an additional small tile as depicted
in Fig. 3.6 (and corresponding gaps in the original tiles).

In general, such vertex decorations alone are not sufficient to reconstruct exactly
the set of regular vertex configurations by the simple ansatz: Tiles may join if and
only if the additional vertez tile matches the corresponding gaps. But introducing
edge decorations, it becomes possible. Irregular configurations as those mentioned
above seem to be allowed again, but the rules (Fig. 3.6) enforce, in such a case, a
wrong vertex tile somewhere else, and thereby a contradiction. As an additional
remark, let us mention that for the tiling 73, it can be shown that the edge deco-
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with vertex decoration:

Fig. 3.6. Local matching rules for T}‘. (The dashed arrows indicate the correspondence to the
decoration rules of Fig. 3.3.)

rations might be chosen in the same shape and size as the additional vertex tiles,
e.g., situated on those points where vertices will occur in case of deflation(s), and
orientated in the same direction as the former edge decoration. Then, the additional
edge tiles become identical to the vertex tiles. (In such a case, one has to show that
such tiles cannot occur partly as edge tiles and partly as vertex tiles.) If one regards
the decorations of vertices and edges as introduction of additional tiles, this reduces
the number of necessary tiles to three (including the modified triangles). Let us
emphasize again that the structure obtained this way belongs to the same SMLD
class as the original tiling 7,.

4. The Dodecagonal Case

Quite recently, two dodecagonal triangular tilings (as well as octagonal ones) have
been derived during the investigation of the root lattice D4, see Ref. 19. Unfor-
tunately, the tilings needed here (taking the projection of the Delaunay cells as
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acceptance domains) have been explained in much less detail than the dual cases
with the projection of the Voronoi cell in perpendicular space. Nevertheless, we
have no doubts that it will be quite easy for the reader to reconstruct missing
information.

Let us start with the dodecagonal case. The acceptance domains for vertices of
’1'15142) are the projections of the three Delaunay cells. All of them have the outer
shape of a square and they are rotated copies of one another. The three resulting
classes of vertex configurations, whose elements are rotated copies as well, need
therefore not be distiguished. The tiling consists of four triangles, see Fig. 4.1, and
has the special property that it is separated by the acute ones. (By separation we
mean that the set of edges of all those acute triangles is equal to the set of edges of
all the other triangles and thereby already the complete set of edges of the entire

tiling.)

N @

Fig. 4.1. Local decoration rules for the twelvefold symmetric triangular tiling T( 2), (One has to
decorate the small triangles at last.)

AN

As in the case of 7}, one has to decorate T( ? in a local manner first (Fig. 4.1)
in order to get local deflation (Fig. 4.2) and 1nﬂat10n rules (Fig. 4.3). It is due to
the separation property that the somewhat uncommon deflation (decomposition)
into patches of slightly deformed outer shapes produces neither gaps nor overlaps.
The inflation rule becomes very simple as a result of this separation property: one
has to invert only the deflation rule of the acute triangle. In quite an analogous way
one checks that this set of local rules respects the LI class. Just as before, decorated
vertex configurations are used for matching rules, and one proves that they fulfill
the conditions mentioned above. The given deflation and inflation correspond to a
dilation by ¥ = /o, 0 = 2+ V3, followed by a rotation of 15°.
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Fig. 4.2. Local deflation rules for 7, 1()142).

Fig. 4.3. Local inflation rules for Téu). (This is already sufficient due to the separation of this
tiling. The decoration of the other inﬁated triangles is to be read from Fig. 4.1.)

Finally, one puts the matching rules in a similar form as in the previous section
by deriving a decoration of edges and vertices (Fig. 4.4). Decorations for edges
are even simpler in this case, due to the separation. But the way we found vertex
decorations in the previous section does not apply to this case. This is due to the
fact that 7, Igl‘z) has no symmetry preserving vertex configuration. The one in which
the even deflations end consists of four acute triangles with big ones in between.
(Only for those acute ones that derivation would apply.) A vertex decoration, which
wants to become a “matching rule”, has to be compatible with the set of regular
vertex configurations. In order to make the vertex decoration compatible with the
regular configurations one has to divide each such configuration in a symmetry-
preserving manner, i.e., in this case, in twelve equal sectors. Next, we choose one
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with vertex decoration:

Fig. 4.4. Local matching rules for 7'1(31‘2). (The dashed arrows indicate the correspondence to the
decoration rules of Fig. 4.1.)

orientation of one sector in one of the vertex configurations, for instance the one
given by the previous method for the acute triangles. Then, we orientate all the
sectors of all configurations which are in the same position to that (decorated!) tile.

Moreover, we orientate the opposite sector in the opposite sense (with respect
to rotation). This is not only a mere analogy of what has been produced in the
former section, since all decorated vertex configurations show such a behaviour
(ie., if for any tile in a configuration a reflected tile appears as well, then the
decoration is the reflected one, too). Applying these rules until all sectors of all
regular configurations are decorated by orientation, one can now introduce, just as
before, an additional vertex tile which reflects exactly that orientation of sectors.
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This ansatz is a generalization of the one of Sec. 3, for it produces, applied to 7}, (or
other applicable tilings), exactly the same vertex decoration. The above derivation
has been applied to the tiling TD(1.2) as well as to 7, lg? (in the next section}.

In the twelvefold case, there appears the additional fact that the orientations are
not specified uniquely. Only eight of the twelve sectors are dependent of each other,
as well as the other four (this resembles the configuration of the vertex mentioned
in which four acute triangles are separated by big ones). Thus it is possible to
define different vertex decorations, applying to all regular vertex configurations
simultaneously. Here, we have chosen the symmetric one. Again, one proves that
these decorations of edges and vertices respect the whole LI class (by reproducing
exactly the set of regular configurations). Whether the second choice results in
equivalent findings has not been analyzed.

We end this section with a remark on the Niizeki- Mitani- Gahler tiling, Ty pmg,
independently found in Refs. 25 and 26, and its matching rules.!® This tiling is
locally derivable from TD(I‘Z) by taking the circumcenter of the acute triangles as
vertices. The edges will be derived from them by drawing all shortest distances
between points. Looking at the acceptance domains of these two tilings, one can
show that the LI class of the Niizeki-Mitani-Gahler tiling includes a globally three-
fold symmetric version, but the LI class of ’I,Slf) does not; therefore one cannot find

a symmetry preserving, local derivation rule from Ty g to 7, 1§i2)- (Reference 16
shows, moreover, that one even cannot find a symmetry breaking one. This is due
to the fact that the boundaries of the acceptance domains of edges or tiles from
T, 151‘2) include angles of 2an/24 (n odd), whereas those of Ty require only even
n’s, i.e., the latter domains cannot reconstruct — symmetry breaking or not — the
former.)

As already mentioned in the Introduction, the decoration of Ty g needed for
matching rules break the global symmetry of the pattern and so cannot be local. Af-
ter having broken the symmetries, the question of local equivalence of the decorated
INmc with T,gi” re-arises. We want to show now that the answer is positive. The
first direction is quite easy, as seen in Fig. 4.5. The cross-shaped tile indicates the
vertex decoration of Tyarg. In order to get the edge decorations, derivations from
the orientation of the decorated great and obtuse triangles of 7; 1(,12) can be given just
as easily: these decorations depend on the acute triangles, as shown in Fig. 4.1, and
the edge decorations are locally dependent on the vertex decorations. The inverse
case is seen in an even simpler way due to the fact that Tp(l‘z) is separated by the
acute triangles and therefore only those need to be reconstructed. This is done by
inversion of Fig. 4.5. SThe relative size of the triangle is given by the ratio between
the longer edges of 75> and those of Tag which is 1/2/2.)

It has been shown in this section that the (undecorated) tiling Tlgl‘z) 1s locally
equivalent to the decorated one, and that the decorated tiling Typg (which is
inequivalent to the undecorated Typg) is equivalent to them as well. Thus, one
has two independent proofs for perfect matching rules of this SMLD class.
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Fig. 4.5. The derivation of the vertex decoration of Tvme from 7}()1‘2).

At this point, we would like to mention that the tiling Tl(,iz) cannot be re-
constructed from the vertex sites alone: one also needs the positions of the acute
triangles. However, also a tiling does exist in the SMLD class of Tl(,iz) which can be
reconstructed from the vertex sites alone. It also has perfect matching rules. Such
a tiling is described in the Appendix.

5. The Octagonal Case

Like Tlglf), the tiling Tlgf) is derived from D4. In this case, one uses Just another
projection direction. Due to this fact, the shapes of the three acceptance domains
are different. Two of them still remain equal-sized squares, but the third one be-
comes an octagon (with the same incircle radius). Therefore, one has to distinguish
two of the three vertex classes from the third one.

It is by chance that the acceptance domain of the well-known Ammann-Beenker
tiling T4 p (see Ref. 11) has exactly the same (furthermore likewise orientated) outer
octagonal shape as one of the vertex classes of Tlgf) . That is, this vertex class, taken

for itself, forms T4p. It might be worth noticing that this vertex class of Tlgf) is
locally distinguishable from the others (it includes exactly those vertices which
contain the tops of the acute or of the obtuse triangles). That means that the tiling
TaB is locally derivable from Tlgf), but is not equivalent to it (the proof runs in the
very same way as in the dodecagonal case).

As in the decagonal and the dodecagonal cases, one has a locally derivable
decoration (Fig. 5.1) which enables one to define a local deflation (Fig. 5.2) and
inflation (Fig. 5.3) in a unique manner.

It follows directly from the vertex configurations corresponding to the square
domains that the middle-sized edges are situated either between an acute and an
obtuse triangle or between an acute one and an oblique one. It is therefore possible
to deform the decomposed patches (as shown by the deflation rule) without pro-
ducing gaps or overlaps. The ansatz for matching rules is, as before, the set of the
decorated vertex configurations, but, conversely to the former cases, this set consists
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AWK

Fig. 5.1. Local decoration rules for eightfold symmetric triangular tiling Tés‘). (One firstly deco-
rates all acute triangles and the obtuse ones afterwards. In the third figure the decoration of one
triangle is allways enforced by the first two figures.)

N%

Fig. 5.2. Local deflation rules for ’Iéi) .

now of the two distinct vertex classes mentioned above. This becomes important if
one wants to construct the vertex decorations, because the two classes have to be
treated separately. On the “Ammann-Beenker class”, the original deflation method
is also applicable. In either case, the vertex decorations of T4, cf. p. 556f of Ref. 8,
are reproduced. On the other class, only the generalized sector method (previous
section) applies and yields a second kind of vertex decoration, compare Fig. 5.4.
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A

/@\\"/\

Fig. 5.3. Local inflation rules for TI()?' (This is sufficient: the holes are only obtuse triangles,
whose decoration can be derived by means of Fig. 5.1).

That in the first case the decorations of T4p are reproduced by the original
method can be seen already after the first deflation. By means of this transforma-
tion, the sites of the original vertices of T4p become exactly those vertices with
eight acute triangles around. At the bases of these triangles, there will always be
an oblique one. The outer shapes of these configurations are exactly those ver-
tex decorations mentioned before. Moreover, right in between these configurations,
there are pairs of oblique triangles situated at the edges of the tiling 745. These
pairs show exactly the right orientation for the edge decoration of 745. Therefore,
’TS? implies both, the tiling T4p and its decorations used for matching rules, in a
local manner. Whereas, just as 7nag, Tap without decoration is not in the same
SMLD class as its decorated version. Now, we show that the SMLD class of the
decorated tiling is the same as that of ’I}gs‘): The decorated tiles of T4p imply a

unique decomposition into the triangles of 7 ,5?. Hence, the missing vertex class

and the bonds of 7, ,Sf) can be reconstructed.

6. Concluding Remarks

Having demonstrated constructively that perfect matching rules for undecorated
tilings do exist not ounly for the Penrose pattern, but also for triangular patterns
with ten-, twelve-, and eightfold symmetry, the generality of these findings comes
into question. First of all, perfect matching rules are relatively rare, although recent
results on the generalized Penrose tilings?® indicate that many important structures
do have them. Let us therefore consider SMLD classes that are compatible with
perfect matching rules. Then, we have two possible situations: either the decora-
tions related to the matching rules are locally derivable from the SMLD class (and
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<1
B —~ A
v :? N
B B

with vertex d tions: i l j A and %B

Fig. 5.4. Local matching rules for TI(JS‘) . Note that there are different edge decorations for different
edge sizes. (The dashed arrows indicate the correspondence to the decoration rules of Fig. 5.1.)

therefore belong to it) or they are not (and therefore form another SMLD class).
In the positive case, let us speak, for simplicity, of class immanent matching rules.

In view of our results, it looks possible that one can find tilings with class imma-
nent matching rules and local inflation/deflation symmetry for many noncrystallo-
graphic symmetries. Examples are also known for icosahedrally symmetric tilings,
e.g., for the Socolar-Steinhardt!? and the Danzer tiling!® which turn out to be both
in the same SMLD class.?%:3°

Within the huge number of possible SMLD classes of a given point symmetry, it
might be a relevant and interesting question to classify those which possess perfect
matching rules.

Several methods are known to prove that given matching rules are perfect, but
a systematic approach — eventually via the embedding into higher dimensions — is
still to be developed. The treatment of the generalized Penrose tilings?® might point
in the right direction. With such a general method at hand, one could hope to come
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to a classification which we think would be an important step in the understanding
of aperiodic structures.
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Appendix

In Sec. 4 it has been mentioned that the tiling T,—E,iz) cannot be reconstructed from
the sites of the vertices alone, i.e., the vertex set belongs to another SMLD class.
This is due to the fact that the acceptance domains of the vertices (the three squares)
decay into domains of tiles which have angles of 27n/24 with not necessarily even
n. This corresponds in the physical space of the tiling to the occurrence of patches
consisting of an acute triangle surrounded by two obtuse ones and a small regular
one at its base. The outer shape of this patch is symmetric and it is possible to flip
the arrangement.

Fig. A.1. 7’1()142) and a tiling derived from it by introducing the circumcenters of the acute triangles.
Both belong to the same SMLD class.

1t is simple to get rid of this indefiniteness of edge or tile arrangement by intro-
ducing additional vertex points. From the patch mentioned it becomes suggestive
to indicate the positions of the acute triangles, for example, by adding their cir-
cumcenters. Now, the new tiles become derivable from the vertices alone. Apart
from that, only one edge length is needed (the smaller one of Tlglf)). The new tiles
are the shield, blown up from the big regular triangle, the rthombus, blown up from
the obtuse triangle, and the regular triangle, which are on one hand the originally
small and on the other hand the reduced acute triangles.

The acceptance domains of the new vertices remain just the same as for Tgf),
only a fourth one for the additional vertices is added. In Sec. 4 it has been mentioned
that the circumcenters of the acute triangles are just the sites of the vertices of
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Tnmc- Therefore, the needed additional domain is the one of that tiling: a regular
dodecagon. The circumradius of it has thereby the same length as the edges of
the quadratic domains. Furthermore, it is clear that this is a tiling which belongs
to the same SMLD class as Tlgiz). (For the backward direction all vertices with
three incident edges have to be replaced by an acute triangle.) So we have, just as
in Sec. 3, a twelvefold symmetric pattern which has perfect matching rules and is
derivable from the vertex sites alone. A similar procedure is possible also for TL()?’
yielding a tiling?! which consists of the rhombi and squares of Ty 5.
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