Return to Home
|
| Sections: Enumeration |
Tetratiles, Hexatiles, Octatiles|
Decatiles | Dodecatiles |
Tetradecatiles | Hexadecatiles |
Octadecatiles | Icosatiles 22-tiles | 24-tiles | 26-tiles | 28-tiles | 30-tiles | 32-tiles | 34-tiles | 36-tiles | 38-tiles | 40-tiles Triangles | Squares & rhombi | Pentagons & Near-misses | Hexagons | Heptagons Lenses & Trilenses | Orthogons |
Strictly Convex PolytilesEnumerationThis table shows the enumeration of strictly-convex p-tiles, by sides with a brute-force search. Chiral pairs are counted as 1. Digon are excluded. The highest-sided strictly convex p-tile is a regular p-gon. Identical polygons can repeat between p-tile families as multiplies. For instance, a square is the tetratile 1^4 and octatile 2^4, and dodecatile 3^4, etc. You can see the counts generally increase exponentially, but not always consecutively. For instance there are more 24-tiles than 26-tiles, and more 30-tiles than 32 tiles.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Sides | r8 | Total |
|---|---|---|
| 4 | 1 | 1 |
| Total | 1 | 1 |
| Sides | r12 | r6 | d4 | Total |
|---|---|---|---|---|
| 3 | 1 | 1 | ||
| 4 | 1 | 1 | ||
| 6 | 1 | 1 | ||
| Total | 1 | 1 | 1 | 3 |
| Sides | r16 | r8 | i4 | d4 | Total |
|---|---|---|---|---|---|
| 4 | 1 | 1 | 2 | ||
| 6 | 1 | 1 | |||
| 8 | 1 | 1 | |||
| Total | 1 | 1 | 1 | 1 | 4 |
There are 7 convex decatiles, grouped by sides:
There is no special names for the irregular hexagons. The form a.(1^c)^2 , like 3.1.1^2 might be called a polygonal-lens, approximating 2 attached circular arcs.
| Sides | r20 | r10 | i4 | d4 | Total |
|---|---|---|---|---|---|
| 4 | 2 | 2 | |||
| 5 | 1 | 1 | |||
| 6 | 2 | 2 | |||
| 8 | 1 | 1 | |||
| 10 | 1 | 1 | |||
| Total | 1 | 1 | 2 | 3 | 7 |
There are 16 convex dodecatiles, grouped by sides:
Polytiles of the form a.b^n are called isotoxal, having one edge type withing its symmetry, and 2 vertex types which alternate.
The decagon 21111^2 , octagon 3111^2, and hexagon 411^2 can be called polygonal-lens.
| Sides | r24 | r12 | r8 | r6 | p4 | i6 | i4 | i2 | d8 | d6 | d4 | g2 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 1 | 1 | |||||||||||
| 4 | 1 | 2 | 3 | ||||||||||
| 5 | 1 | 1 | |||||||||||
| 6 | 1 | 1 | 1 | 1 | 4 | ||||||||
| 7 | 1 | 1 | |||||||||||
| 8 | 1 | 1 | 1 | 3 | |||||||||
| 9 | 1 | 1 | |||||||||||
| 10 | 1 | 1 | |||||||||||
| 12 | 1 | 1 | |||||||||||
| Total | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 1 | 16 |
There are 17 tetradecatiles, grouped by sides:
| Sides | r28 | r14 | i4 | d4 | g2 | Total |
|---|---|---|---|---|---|---|
| 4 | 3 | 3 | ||||
| 6 | 3 | 1 | 4 | |||
| 7 | 1 | 1 | ||||
| 8 | 3 | 1 | 4 | |||
| 10 | 3 | 3 | ||||
| 12 | 1 | 1 | ||||
| 14 | 1 | 1 | ||||
| Total | 1 | 1 | 6 | 7 | 2 | 17 |
There are 28 hexadecatiles, grouped by sides:
| Sides | r32 | r16 | r8 | p4 | i8 | i4 | d8 | d4 | g2 | Total |
|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 3 | 4 | |||||||
| 6 | 3 | 2 | 5 | |||||||
| 8 | 1 | 1 | 1 | 3 | 2 | 8 | ||||
| 10 | 3 | 2 | 5 | |||||||
| 12 | 1 | 1 | 2 | 4 | ||||||
| 14 | 1 | 1 | ||||||||
| 16 | 1 | 1 | ||||||||
| Total | 1 | 1 | 1 | 2 | 1 | 7 | 1 | 8 | 6 | 28 |
There are 70 octadecatiles, with 3,4,5,6,7,8,9,10,11,12,13,14,15,17,18 sides.
| Sides | r36 | r18 | r12 | r6 | p6 | p2 | i6 | i4 | i2 | d12 | d6 | d4 | d2 | g3 | g2 | a1 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 1 | 1 | |||||||||||||||
| 4 | 4 | 4 | |||||||||||||||
| 5 | 1 | 1 | |||||||||||||||
| 6 | 1 | 3 | 2 | 3 | 9 | ||||||||||||
| 7 | 3 | 1 | 4 | ||||||||||||||
| 8 | 1 | 6 | 1 | 4 | 12 | ||||||||||||
| 9 | 1 | 1 | 1 | 3 | 6 | ||||||||||||
| 10 | 6 | 2 | 4 | 12 | |||||||||||||
| 11 | 3 | 1 | 4 | ||||||||||||||
| 12 | 1 | 1 | 1 | 3 | 3 | 9 | |||||||||||
| 13 | 1 | 1 | |||||||||||||||
| 14 | 4 | 4 | |||||||||||||||
| 15 | 1 | 1 | |||||||||||||||
| 16 | 1 | 1 | |||||||||||||||
| 18 | 1 | 1 | |||||||||||||||
| Total | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 13 | 6 | 1 | 3 | 14 | 3 | 1 | 14 | 7 | 70 |
There are 85 icosatiles, grouped by sides:
| Sides | r40 | r20 | r10 | r8 | p4 | i10 | i8 | i4 | i2 | d10 | d8 | d4 | g2 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 4 | 5 | |||||||||||
| 5 | 1 | 1 | ||||||||||||
| 6 | 4 | 4 | 8 | |||||||||||
| 7 | 1 | 1 | ||||||||||||
| 8 | 2 | 2 | 6 | 6 | 16 | |||||||||
| 9 | 2 | 2 | ||||||||||||
| 10 | 1 | 5 | 1 | 10 | 17 | |||||||||
| 11 | 2 | 2 | ||||||||||||
| 12 | 2 | 2 | 6 | 6 | 16 | |||||||||
| 13 | 1 | 1 | ||||||||||||
| 14 | 4 | 4 | 8 | |||||||||||
| 15 | 1 | 1 | ||||||||||||
| 16 | 2 | 1 | 2 | 5 | ||||||||||
| 18 | 1 | 1 | ||||||||||||
| 20 | 1 | 1 | ||||||||||||
| Total | 1 | 1 | 1 | 1 | 6 | 1 | 2 | 14 | 6 | 1 | 3 | 18 | 30 | 85 |
There are 125 22-tiles.
| Sides | r44 | r22 | i4 | d4 | g2 | Total |
|---|---|---|---|---|---|---|
| 4 | 5 | 5 | ||||
| 6 | 5 | 5 | 10 | |||
| 8 | 10 | 10 | 20 | |||
| 10 | 10 | 16 | 26 | |||
| 11 | 1 | 1 | ||||
| 12 | 10 | 16 | 26 | |||
| 14 | 10 | 10 | 20 | |||
| 16 | 5 | 5 | 10 | |||
| 18 | 5 | 5 | ||||
| 20 | 1 | 1 | ||||
| 22 | 1 | 1 | ||||
| Total | 1 | 1 | 30 | 31 | 62 | 125 |
There are 392 24-tiles.
| Sides | r48 | r24 | r16 | r12 | r8 | p8 | p6 | p4 | p2 | i12 | i8 | i6 | i4 | i2 | d16 | d12 | d8 | d6 | d4 | d2 | g4 | g3 | g2 | a1 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 5 | 6 | ||||||||||||||||||||||
| 5 | 1 | 1 | 2 | ||||||||||||||||||||||
| 6 | 1 | 4 | 3 | 7 | 15 | ||||||||||||||||||||
| 7 | 4 | 4 | 8 | ||||||||||||||||||||||
| 8 | 1 | 2 | 1 | 2 | 10 | 1 | 14 | 2 | 33 | ||||||||||||||||
| 9 | 3 | 3 | 2 | 12 | 20 | ||||||||||||||||||||
| 10 | 1 | 10 | 8 | 28 | 3 | 50 | |||||||||||||||||||
| 11 | 8 | 19 | 27 | ||||||||||||||||||||||
| 12 | 1 | 1 | 4 | 1 | 1 | 1 | 3 | 13 | 1 | 1 | 2 | 29 | 8 | 66 | |||||||||||
| 13 | 8 | 19 | 27 | ||||||||||||||||||||||
| 14 | 2 | 10 | 7 | 28 | 3 | 50 | |||||||||||||||||||
| 15 | 3 | 3 | 2 | 12 | 20 | ||||||||||||||||||||
| 16 | 1 | 4 | 1 | 1 | 1 | 8 | 1 | 14 | 2 | 33 | |||||||||||||||
| 17 | 4 | 4 | 8 | ||||||||||||||||||||||
| 18 | 1 | 1 | 4 | 2 | 7 | 15 | |||||||||||||||||||
| 19 | 1 | 1 | 2 | ||||||||||||||||||||||
| 20 | 2 | 1 | 3 | 6 | |||||||||||||||||||||
| 21 | 1 | 1 | |||||||||||||||||||||||
| 22 | 1 | 1 | |||||||||||||||||||||||
| 24 | 1 | 1 | |||||||||||||||||||||||
| Total | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 12 | 6 | 1 | 2 | 7 | 29 | 32 | 1 | 1 | 3 | 8 | 39 | 18 | 1 | 6 | 127 | 90 | 391 |
There are 379 26-tiles.
| Sides | r52 | r26 | i4 | d4 | g2 | Total |
|---|---|---|---|---|---|---|
| 4 | 6 | 6 | ||||
| 6 | 6 | 8 | 14 | |||
| 8 | 15 | 20 | 35 | |||
| 10 | 15 | 42 | 57 | |||
| 12 | 20 | 56 | 76 | |||
| 13 | 1 | 1 | ||||
| 14 | 20 | 56 | 76 | |||
| 16 | 15 | 42 | 57 | |||
| 18 | 15 | 20 | 35 | |||
| 20 | 6 | 8 | 14 | |||
| 22 | 6 | 6 | ||||
| 24 | 1 | 1 | ||||
| 26 | 1 | 1 | ||||
| Total | 1 | 1 | 62 | 63 | 252 | 379 |
There are 704 28-tiles.
| Sides | r56 | r28 | r14 | r8 | p4 | i14 | i8 | i4 | i2 | d14 | d8 | d4 | g4 | g2 | a1 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 6 | 7 | |||||||||||||
| 6 | 6 | 10 | 16 | |||||||||||||
| 7 | 1 | 1 | ||||||||||||||
| 8 | 3 | 3 | 15 | 26 | 47 | |||||||||||
| 9 | 1 | 1 | ||||||||||||||
| 10 | 15 | 64 | 79 | |||||||||||||
| 11 | 3 | 3 | ||||||||||||||
| 12 | 6 | 3 | 26 | 1 | 90 | 126 | ||||||||||
| 13 | 3 | 1 | 4 | |||||||||||||
| 14 | 1 | 19 | 1 | 113 | 134 | |||||||||||
| 15 | 3 | 1 | 4 | |||||||||||||
| 16 | 10 | 3 | 22 | 1 | 90 | 126 | ||||||||||
| 17 | 3 | 3 | ||||||||||||||
| 18 | 15 | 64 | 79 | |||||||||||||
| 19 | 1 | 1 | ||||||||||||||
| 20 | 6 | 3 | 12 | 26 | 47 | |||||||||||
| 21 | 1 | 1 | ||||||||||||||
| 22 | 6 | 10 | 16 | |||||||||||||
| 24 | 3 | 1 | 3 | 7 | ||||||||||||
| 26 | 1 | 1 | ||||||||||||||
| 28 | 1 | 1 | ||||||||||||||
| Total | 1 | 1 | 1 | 1 | 28 | 1 | 6 | 62 | 14 | 1 | 7 | 84 | 2 | 493 | 2 | 704 |
There are 3359 30-tiles.
| Sides | r60 | r30 | r20 | r12 | r10 | r6 | p10 | p6 | p2 | i12 | i10 | i6 | i4 | i2 | d20 | d12 | d10 | d6 | d4 | d2 | g5 | g3 | g2 | a1 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 1 | 1 | |||||||||||||||||||||||
| 4 | 7 | 7 | |||||||||||||||||||||||
| 5 | 1 | 2 | 3 | ||||||||||||||||||||||
| 6 | 1 | 6 | 4 | 1 | 12 | 24 | |||||||||||||||||||
| 7 | 8 | 9 | 17 | ||||||||||||||||||||||
| 8 | 3 | 21 | 4 | 35 | 8 | 71 | |||||||||||||||||||
| 9 | 4 | 6 | 4 | 46 | 60 | ||||||||||||||||||||
| 10 | 1 | 2 | 20 | 2 | 20 | 90 | 38 | 173 | |||||||||||||||||
| 11 | 23 | 122 | 145 | ||||||||||||||||||||||
| 12 | 2 | 11 | 2 | 6 | 33 | 13 | 6 | 150 | 106 | 329 | |||||||||||||||
| 13 | 25 | 224 | 249 | ||||||||||||||||||||||
| 14 | 8 | 35 | 36 | 197 | 166 | 442 | |||||||||||||||||||
| 15 | 1 | 1 | 5 | 30 | 1 | 10 | 267 | 315 | |||||||||||||||||
| 16 | 20 | 35 | 24 | 197 | 166 | 442 | |||||||||||||||||||
| 17 | 25 | 224 | 249 | ||||||||||||||||||||||
| 18 | 2 | 6 | 2 | 33 | 6 | 18 | 6 | 150 | 106 | 329 | |||||||||||||||
| 19 | 23 | 122 | 145 | ||||||||||||||||||||||
| 20 | 1 | 12 | 1 | 1 | 20 | 10 | 90 | 38 | 173 | ||||||||||||||||
| 21 | 4 | 6 | 4 | 46 | 60 | ||||||||||||||||||||
| 22 | 2 | 21 | 5 | 35 | 8 | 71 | |||||||||||||||||||
| 23 | 8 | 9 | 17 | ||||||||||||||||||||||
| 24 | 2 | 1 | 1 | 2 | 6 | 12 | 24 | ||||||||||||||||||
| 25 | 1 | 2 | 3 | ||||||||||||||||||||||
| 26 | 7 | 7 | |||||||||||||||||||||||
| 27 | 1 | 1 | |||||||||||||||||||||||
| 28 | 1 | 1 | |||||||||||||||||||||||
| 30 | 1 | 1 | |||||||||||||||||||||||
| Total | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 65 | 2 | 2 | 14 | 122 | 154 | 1 | 3 | 3 | 18 | 123 | 131 | 1 | 30 | 968 | 1709 | 3359 |
There are 2248 32-tiles:
| Sides | r64 | r32 | r16 | r8 | p8 | p4 | i16 | i8 | i4 | d16 | d8 | d4 | g4 | g2 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 7 | 8 | ||||||||||||
| 6 | 7 | 14 | 21 | ||||||||||||
| 8 | 1 | 3 | 3 | 21 | 44 | 72 | |||||||||
| 10 | 21 | 126 | 147 | ||||||||||||
| 12 | 9 | 3 | 44 | 2 | 222 | 280 | |||||||||
| 14 | 35 | 340 | 375 | ||||||||||||
| 16 | 1 | 1 | 16 | 1 | 3 | 48 | 2 | 368 | 440 | ||||||
| 18 | 35 | 340 | 375 | ||||||||||||
| 20 | 16 | 3 | 37 | 2 | 222 | 280 | |||||||||
| 22 | 21 | 126 | 147 | ||||||||||||
| 24 | 1 | 9 | 1 | 2 | 15 | 44 | 72 | ||||||||
| 26 | 7 | 14 | 21 | ||||||||||||
| 28 | 3 | 1 | 4 | 8 | |||||||||||
| 30 | 1 | 1 | |||||||||||||
| 32 | 1 | 1 | |||||||||||||
| Total | 1 | 1 | 1 | 1 | 2 | 56 | 1 | 7 | 127 | 1 | 8 | 176 | 6 | 1860 | 2248 |
There are 4111 34-tiles:
There are 18510 36-tiles
There are 14309 38-tiles
There are 30820 40-tiles
The only equilateral triangle is regular. It can be constructed as 3k-tiles: k^3, shown for 6,9,12,15,18,21.
For a given p-tiles, there are int(p/2) rhombi, p:a.b^2, where p=2(a+b). If p/2 is even, one of them is a square. A rhombus has d4 symmetry.
There are a relatively few number of strictly-convex equilateral pentagons. All of them besides a regular pentagon can be dissected into an equilateral triangle of a rhombus, so only occur for p-tiles with p as a multiple of 3. The only equilateral pentagon with bilateral symmetry, i2, is 12:4.1.3.3.1, as a triangle and square. The remainder have no symmetry, a1.
![]()
Set
of convex equilateral pentagons, p=4...100
There are a few near-misses, given a more generous tolerance for closing.
These can be considered partial polytiles, with one edge length non-unit length, and two angles not quite whole divisors of a full circle
![]()
Near-miss
pentagonal polytiles
Here, a convex lens polytile can be seen in the form p:a.(1^b)^2, with p=2(a+b). Lenses can only have an even number of sides, specifically a 2(1+b)-gon. If b=1, a lens is a rhombus. When a=1, it becomes regular. The largest nonregular lenses, a=2, are (p-2)-gons. A lens will have either d4 or i4 symmetry, depending on the number of sides.
A lens can be constructed as an extended digon: 2k:k^2!(1^b), where b=1...k.
A convex trilens polytile can be seen of the form p:a.(1^b)^3, with p=3(a+b). Trilenses have sides as a multiple of 3, specifically 3(1+b)-gon. If b=0, it is a triangle. If b=1, it is an isotoxal hexagon. If a=1, it becomes regular. The largest nonregular trilenses, a=2, are (p-3)-gons. A trilens will have either d6 or i6 symmetry, depending on the number of sides.
A trilens can be construcated as an extended triangle: 3k:k^3!(1^b), where b=1..k.
This can generalize into a k-lens of the form p:a.(1^b)^k, where p=k(a+b).
Here a convex orthogon is defined as a convex polygon with two orthogonal lines of reflection. There are int(p/4) strictly-convex orthogons among the strictly convex p-tiles. They can have symmetry p4,i4,d4. A p-tile orthogon is a (p-4)-gon.
© 2020-2021 Created by Tom Ruen