Acronym gixhidy
Cross sections
` ©`
Circumradius sqrt[(11-3 sqrt(5))/2] = 1.464888
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: doe giid quit gissid quit sissid tet gohihix 120 120 0 0 600 gixhidy 120 0 120 120 600
& others)
External

As abstract polytope gixhidy is isomorphical to sixhidy, thereby replacinging decagrams by decagons and pentagons by pentagrams, respectively replacinging quit gissid by tid, quit sissid by tigid, and doe by gissid.

Incidence matrix according to Dynkin symbol

```x3o3o5x5/3*a

. . . .      | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-------------+------+-----------+----------------+----------------
x . . .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
. . . x      |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-------------+------+-----------+----------------+----------------
x3o . .      |    3 |    3    0 | 2400    *    * |   1   1   0   0
x . . x5/3*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
. . o5x      |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-------------+------+-----------+----------------+----------------
x3o3o .      ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3o . x5/3*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x . o5x5/3*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
. o3o5x      ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3o3/2o5/4x5/3*a

. .   .   .      | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-----------------+------+-----------+----------------+----------------
x .   .   .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
. .   .   x      |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-----------------+------+-----------+----------------+----------------
x3o   .   .      |    3 |    3    0 | 2400    *    * |   1   1   0   0
x .   .   x5/3*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
. .   o5/4x      |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-----------------+------+-----------+----------------+----------------
x3o3/2o   .      ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3o   .   x5/3*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x .   o5/4x5/3*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
. o3/2o5/4x      ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3/2o3o5/4x5/3*a

.   . .   .      | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-----------------+------+-----------+----------------+----------------
x   . .   .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
.   . .   x      |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-----------------+------+-----------+----------------+----------------
x3/2o .   .      |    3 |    3    0 | 2400    *    * |   1   1   0   0
x   . .   x5/3*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
.   . o5/4x      |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-----------------+------+-----------+----------------+----------------
x3/2o3o   .      ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3/2o .   x5/3*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x   . o5/4x5/3*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
.   o3o5/4x      ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3/2o3/2o5x5/3*a

.   .   . .      | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-----------------+------+-----------+----------------+----------------
x   .   . .      |    2 | 3600    * |    2    2    0 |   1   2   1   0
.   .   . x      |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-----------------+------+-----------+----------------+----------------
x3/2o   . .      |    3 |    3    0 | 2400    *    * |   1   1   0   0
x   .   . x5/3*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
.   .   o5x      |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-----------------+------+-----------+----------------+----------------
x3/2o3/2o .      ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3/2o   . x5/3*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x   .   o5x5/3*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
.   o3/2o5x      ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

 © 2004-2013 top of page