Acronym n-azedip Name n-gonal - apeirogonal duoprism Especially squat (n=∞) Confer n,m-dip   2n,m-dip   2n,2m-dip Externallinks

Even so this looks just like a mere axial tower of n-gonal prisms, it still is a honeycomb of the complete space: the outer empty space may well be considered filled by n inifinite-gonal prisms each.

It also is an extension of the general n,m-duoprism, thereby becoming a flat honeycomb.

Incidence matrix according to Dynkin symbol

```xNo xno   (N→∞, n>2)

. . . . | Nn |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | Nn  * | 1  2 0 | 2 1
. . x . |  2 |  * Nn | 0  2 1 | 1 2
--------+----+-------+--------+----
xNo . . |  N |  N  0 | n  * * | 2 0
x . x . |  4 |  2  2 | * Nn * | 1 1
. . xno |  n |  0  n | *  * N | 0 2
--------+----+-------+--------+----
xNo x . ♦ 2N | 2N  N | 2  N 0 | n *
x . xno ♦ 2n |  n 2n | 0  n 2 | * N
```

```xNx xno   (N→∞, n>2)

. . . . | 2Nn |  1  1   2 | 1  2  2  1 | 2 1 1
--------+-----+-----------+------------+------
x . . . |   2 | Nn  *   * | 1  2  0  0 | 2 1 0
. x . . |   2 |  * Nn   * | 1  0  2  0 | 2 0 1
. . x . |   2 |  *  * 2Nn | 0  1  1  1 | 1 1 1
--------+-----+-----------+------------+------
xNx . . |  2N |  N  N   0 | n  *  *  * | 2 0 0
x . x . |   4 |  2  0   2 | * Nn  *  * | 1 1 0
. x x . |   4 |  0  2   2 | *  * Nn  * | 1 0 1
. . xno |   n |  0  0   n | *  *  * 2N | 0 1 1
--------+-----+-----------+------------+------
xNx x . ♦  4N | 2N 2N  2N | 2  N  N  0 | n * *
x . xno ♦  2n |  n  0  2n | 0  n  0  2 | * N *
. x xno ♦  2n |  0  n  2n | 0  0  n  2 | * * N
```

```xNx sns   (N→∞, n>2)

. . demi( . . ) | 2Nn |  1  1   2 | 1  2  2  1 | 2 1 1
----------------+-----+-----------+------------+------
x . demi( . . ) |   2 | Nn  *   * | 1  2  0  0 | 2 1 0
. x demi( . . ) |   2 |  * Nn   * | 1  0  2  0 | 2 0 1
. . sefa( sns ) |   2 |  *  * 2Nn | 0  1  1  1 | 1 1 1
----------------+-----+-----------+------------+------
xNx demi( . . ) |  2N |  N  N   0 | n  *  *  * | 2 0 0
x . sefa( sns ) |   4 |  2  0   2 | * Nn  *  * | 1 1 0
. x sefa( sns ) |   4 |  0  2   2 | *  * Nn  * | 1 0 1
. .       sns   ♦   n |  0  0   n | *  *  * 2N | 0 1 1
----------------+-----+-----------+------------+------
xNx sefa( sns ) ♦  4N | 2N 2N  2N | 2  N  N  0 | n * *
x .       sns   ♦  2n |  n  0  2n | 0  n  0  2 | * N *
. x       sns   ♦  2n |  0  n  2n | 0  0  n  2 | * * N
```