Acronym ticcup, K-4.99 Name truncated-cube prism Segmentochoron display Cross sections ` ©` Circumradius sqrt[2+sqrt(2)] = 1.847759 Coordinates ((1+sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations in all but last coord., all changes of sign Externallinks

As abstract polytope ticcup is isomorphic to quithip, thereby replacing octagons by octagrams, resp. replacing op by stop and tic by quith.

Incidence matrix according to Dynkin symbol

```x o3x4x

. . . . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
--------+----+----------+-------------+------
x . . . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. . x . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. . . x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
--------+----+----------+-------------+------
x . x . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x . . x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3x . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. . x4x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
--------+----+----------+-------------+------
x o3x . ♦  6 |  3  6  0 |  3  0  2  0 | 8 * *
x . x4x ♦ 16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3x4x ♦ 24 |  0 24 12 |  0  0  8  6 | * * 2
```

```x o3/2x4x

. .   . . | 48 |  1  2  1 |  2  1  1  2 | 1 2 1
----------+----+----------+-------------+------
x .   . . |  2 | 24  *  * |  2  1  0  0 | 1 2 0
. .   x . |  2 |  * 48  * |  1  0  1  1 | 1 1 1
. .   . x |  2 |  *  * 24 |  0  1  0  2 | 0 2 1
----------+----+----------+-------------+------
x .   x . |  4 |  2  2  0 | 24  *  *  * | 1 1 0
x .   . x |  4 |  2  0  2 |  * 12  *  * | 0 2 0
. o3/2x . |  3 |  0  3  0 |  *  * 16  * | 1 0 1
. .   x4x |  8 |  0  4  4 |  *  *  * 12 | 0 1 1
----------+----+----------+-------------+------
x o3/2x . ♦  6 |  3  6  0 |  3  0  2  0 | 8 * *
x .   x4x ♦ 16 |  8  8  8 |  4  4  0  2 | * 6 *
. o3/2x4x ♦ 24 |  0 24 12 |  0  0  8  6 | * * 2
```

```oo3xx4xx&#x   → height = 1
(tic || tic)

o.3o.4o.    | 24  * |  1  2  1  0  0 | 1 2  2  1 0 0 | 1 1 2 0
.o3.o4.o    |  * 24 |  0  0  1  2  1 | 0 0  2  1 1 2 | 0 1 2 1
------------+-------+----------------+---------------+--------
.. x. ..    |  2  0 | 24  *  *  *  * | 1 1  1  0 0 0 | 1 1 1 0
.. .. x.    |  2  0 |  * 12  *  *  * | 0 2  0  1 0 0 | 1 0 2 0
oo3oo4oo&#x |  1  1 |  *  * 24  *  * | 0 0  2  1 0 0 | 0 1 2 0
.. .x ..    |  0  2 |  *  *  * 24  * | 0 0  1  0 1 1 | 0 1 1 1
.. .. .x    |  0  2 |  *  *  *  * 12 | 0 0  0  1 0 2 | 0 0 2 1
------------+-------+----------------+---------------+--------
o.3x. ..    |  3  0 |  3  0  0  0  0 | 8 *  *  * * * | 1 1 0 0
.. x.4x.    |  8  0 |  4  4  0  0  0 | * 6  *  * * * | 1 0 1 0
.. xx ..&#x |  2  2 |  1  0  2  1  0 | * * 24  * * * | 0 1 1 0
.. .. xx&#x |  2  2 |  0  1  2  0  1 | * *  * 12 * * | 0 0 2 0
.o3.x ..    |  0  3 |  0  0  0  3  0 | * *  *  * 8 * | 0 1 0 1
.. .x4.x    |  0  8 |  0  0  0  4  4 | * *  *  * * 6 | 0 0 1 1
------------+-------+----------------+---------------+--------
o.3x.4x.    ♦ 24  0 | 24 12  0  0  0 | 8 6  0  0 0 0 | 1 * * *
oo3xx ..&#x ♦  3  3 |  3  0  3  3  0 | 1 0  3  0 1 0 | * 8 * *
.. xx4xx&#x ♦  8  8 |  4  4  8  4  4 | 0 1  4  4 0 1 | * * 6 *
.o3.x4.x    ♦  0 24 |  0  0  0 24 12 | 0 0  0  0 8 6 | * * * 1
```