Acronym ..., 10Y4-8T-1-hel Name helical staggered 1×60°-gyrated 10Y4-8T-0 ` ©` Pattern(fundamental domain) ``` u Vertices: /|\ u = vertices within lower trat plane / c \ o = vertices within upper trat plane a _o_ b /_d/T\d_\ Edges: u--/-a-\--u a = {4}-inc. trat-edges |\b Y a/| b = not {4}-inc. trat-edges c/b Y a\c c = {4}-inc. lace-edges o-_--a--_-o d = not {4}-inc. lace-edges \ d\T/d / a u b Triangles: \ | / N = betw. T and Y4 \c/ Y = betw. Y4 and Y4 o T = betw. T and T ``` Confer related CRF honeycombs: 10Y4-8T-0   10Y4-8T-1-alt   10Y4-8T-2-alt   10Y4-8T-2-hel (r/l)   10Y4-8T-3   5Y4-4T-6P3-tri-1-hel (r/l) Externallinks

This scaliform honeycomb is derived from 5Y4-4T-6P3-tri-1-hel by withdrawing the elongating layers of trips.

Further it occurs as gyration at one set of parallel trat sections of 10Y4-8T-0 in steps of 1×60° using the 6-periodic helical staggering mode.

Incidence matrix

```(N→∞)

N |  4 2 2  4 | 3 3  6  6  6 4 |  8 10
--+-----------+----------------+------
2 | 2N * *  * | 1 1  1  0  1 1 |  2  3  a
2 |  * N *  * | 1 1  0  2  0 0 |  2  2  b
2 |  * * N  * | 0 0  2  2  0 2 |  2  4  c
2 |  * * * 2N | 0 0  1  1  2 0 |  2  2  d
--+-----------+----------------+------
3 |  2 1 0  0 | N *  *  *  * * |  2  0  aab-T
3 |  2 1 0  0 | * N  *  *  * * |  0  2  aab-Y
3 |  1 0 1  1 | * * 2N  *  * * |  1  1  acd
3 |  0 1 1  1 | * *  * 2N  * * |  1  1  bcd
3 |  1 0 0  2 | * *  *  * 2N * |  1  1  add
4 |  2 0 2  0 | * *  *  *  * N |  0  2  acac
--+-----------+----------------+------
4 |  2 1 1  2 | 1 0  1  1  1 0 | 2N  *  tet
5 |  3 1 2  2 | 0 1  1  1  1 1 |  * 2N  squippy
```