Acronym trip, 3-p TOCID symbol (3)P Name triangular prism,digonal cupola,Delone cell of unit-stacked hexagonal lattice,vertex figure of rap |,>,O device line pyramid prism = |>| Circumradius sqrt(7/12) = 0.763763 Vertex figure [3,42] Snub derivation `   ` Lace cityin approx. ASCII-art ```o o x x ``` Coordinates (1/2, 1/2, -1/sqrt(12))   & all changes of sign in all but last coord (1/2, 0, 1/sqrt(3))         & all changes of sign in all but last coord Volume sqrt(3)/4 = 0.433013 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles between {3} and {4}:   90° between {4} and {4}:   60° Dual m2m3o Confer general prisms: n-p   n/d-p   Grünbaumian relatives: 2trip   related Johnson solids: gybef   variations: v x3o   q x3o   f x3o   u x3o   x q3o   x f3o   x u3o   v f3o   f v3o   xx2ox&#q   faceting: xo3/2ox&#q   blends: tutrip   compounds: ro   dro   kri   general polytopal classes: segmentohedra   lace simplices Externallinks

Incidence matrix according to Dynkin symbol

```x x3o

. . . | 6 | 1 2 | 2 1
------+---+-----+----
x . . | 2 | 3 * | 2 0
. x . | 2 | * 6 | 1 1
------+---+-----+----
x x . | 4 | 2 2 | 3 *
. x3o | 3 | 0 3 | * 2

snubbed forms: x2β3o
```

```s3s2x

demi( . . . ) | 6 | 1 2 | 1 2
--------------+---+-----+----
demi( . . x ) | 2 | 3 * | 0 2
sefa( s3s . ) | 2 | * 6 | 1 1
--------------+---+-----+----
s3s .   ♦ 3 | 0 3 | 2 *
sefa( s3s4x ) | 4 | 2 2 | * 3

starting figure: x3x2x
```

```β3o2x

both( . . . ) | 6 | 1 2 | 1 2
--------------+---+-----+----
both( . . x ) | 2 | 3 * | 0 2
sefa( β3o . ) | 2 | * 6 | 1 1
--------------+---+-----+----
β3o .   ♦ 3 | 0 3 | 2 *
sefa( β3o2x ) | 4 | 2 2 | * 3

starting figure: x3o x
```

```xx3oo&#x   → height = 1
({3} || {3})

o.3o.    | 3 * | 2 1 0 | 1 2 0
.o3.o    | * 3 | 0 1 2 | 0 2 1
---------+-----+-------+------
x. ..    | 2 0 | 3 * * | 1 1 0
oo3oo&#x | 1 1 | * 3 * | 0 2 0
.x ..    | 0 2 | * * 3 | 0 1 1
---------+-----+-------+------
x.3o.    | 3 0 | 3 0 0 | 1 * *
xx ..&#x | 2 2 | 1 2 1 | * 3 *
.x3.o    | 0 3 | 0 0 3 | * * 1
```

```xx ox&#x   → height = sqrt(3)/2 = 0.866025
(line || {4})

o. o.    | 2 * | 1 2 0 0 | 2 1 0
.o .o    | * 4 | 0 1 1 1 | 1 1 1
---------+-----+---------+------
x. ..    | 2 0 | 1 * * * | 2 0 0
oo oo&#x | 1 1 | * 4 * * | 1 1 0
.x ..    | 0 2 | * * 2 * | 1 0 1
.. .x    | 0 2 | * * * 2 | 0 1 1
---------+-----+---------+------
xx ..&#x | 2 2 | 1 2 1 0 | 2 * *
.. ox&#x | 1 2 | 0 2 0 1 | * 2 *
.x .x    | 0 4 | 0 0 2 2 | * * 1
```

```xxoo&#xr   → height(1,2) = height(3,4) = 1
height(2,3) = height(4,1) = sqrt(3)/2 = 0.866025
(line || (line || pt) || pt)

o(..).    | 2 * * * | 1 1 1 0 0 0 | 1 1 1 0
.(o.).    | * 2 * * | 0 1 0 1 1 0 | 1 0 1 1
.(.o).    | * * 1 * | 0 0 2 0 0 1 | 0 1 2 0
.(..)o    | * * * 1 | 0 0 0 0 2 1 | 0 0 2 1
----------+---------+-------------+--------
x(..).    | 2 0 0 0 | 1 * * * * * | 1 1 0 0
o(o.).&#x | 1 1 0 0 | * 2 * * * * | 1 0 1 0
o(.o).&#x | 1 0 1 0 | * * 2 * * * | 0 1 1 0
.(x.).    | 0 2 0 0 | * * * 1 * * | 1 0 0 1
.(o.)o&#x | 0 1 0 1 | * * * * 2 * | 0 0 1 1
.(.o)o&#x | 0 0 1 1 | * * * * * 1 | 0 0 2 0
----------+---------+-------------+--------
x(x.).&#x | 2 2 0 0 | 1 2 0 1 0 0 | 1 * * *
x(.o).&#x | 2 0 1 0 | 1 0 2 0 0 0 | * 1 * *
oooo&#xr  | 1 1 1 1 | 0 1 1 0 1 1 | * * 2 *
.(x.)o&#x | 0 2 0 1 | 0 0 0 1 2 0 | * * * 1
```

```xxx&#x   → all heights = 1
(line || (line || line))

o..    | 2 * * | 1 1 1 0 0 0 | 1 1 1 0
.o.    | * 2 * | 0 1 0 1 1 0 | 1 0 1 1
..o    | * * 2 | 0 0 1 0 1 1 | 0 1 1 1
-------+-------+-------------+--------
x..    | 2 0 0 | 1 * * * * * | 1 1 0 0
oo.&#x | 1 1 0 | * 2 * * * * | 1 0 1 0
o.o&#x | 1 0 1 | * * 2 * * * | 0 1 1 0
.x.    | 0 2 0 | * * * 1 * * | 1 0 0 1
.oo&#x | 0 1 1 | * * * * 2 * | 0 0 1 1
..x    | 0 0 2 | * * * * * 1 | 0 1 0 1
-------+-------+-------------+--------
xx.&#x | 2 2 0 | 1 2 0 1 0 0 | 1 * * *
x.x&#x | 2 0 2 | 1 0 2 0 0 1 | * 1 * *
ooo&#x | 1 1 1 | 0 1 1 0 1 0 | * * 2 *
.xx&#x | 0 2 2 | 0 0 0 1 2 1 | * * * 1
```