Acronym ... Name tetracontadisdiminished ex Circumradius (1+sqrt(5))/2 = 1.618034 Lace cityin approx. ASCII-art ``` o5o o5o o5x o5o o5o f5o o5f o5f o5x o5x x5x x5o x5o f5o f5o o5f o5o o5o x5o o5o o5o | | | | +-- ike | | | +-------------- f-ike | | +--------------------- id | +---------------------------- f-ike +---------------------------------------- ike ``` ``` x3o o3f f3o o3x with F=ff=f+x f3o o3F F3o o3f o3x x3f F3o f3f o3F f3x x3o - id f3o o3F F3o o3f - f-ike x3o o3f f3o o3x - ike \ +---------------------- teddi ``` General of army (is itself convex) Colonel of regiment (is itself locally convex) Confer uniform relative: ex   related segmentochora: ikepy   related CRFs: iku   42-diminished sidpixhi

This polychoron is obtained from ex by chopping off several ikepies. Two of these are antipodal, the others are situated at two parallel layers of 20 each. These cut off vertices then are situated pairwise at neighbouring ones within each layer, respectively at one but neighbouring ones wrt. the polar ones. Therefore the to be introduced ikes within each layer of 20 would pairwise intersect, diminishing those into teddis, while the polar ones remain undiminished. Thus from all the former 600 tets of ex here only the 60 equatorial ones survive.

Incidence matrix according to Dynkin symbol

```xfofx3ooxoo5ooooo&#xt   → height(1,2) = height(4,5) = (1+sqrt(5))/4 = 0.809017
height(2,3) = height(3,4) = 1/2

o....3o....5o....     & | 24  *  * |  5  1   0  0  0 |  5  5   0  0  0 | 1  5  0
.o...3.o...5.o...     & |  * 24  * |  0  1   5  1  0 |  0  5   5  5  0 | 0  5  5
..o..3..o..5..o..       |  *  * 30 |  0  0   4  0  4 |  0  2   8  2  2 | 0  4  4
------------------------+----------+-----------------+-----------------+--------
x.... ..... .....     & |  2  0  0 | 60  *   *  *  * |  2  1   0  0  0 | 1  2  0
oo...3oo...5oo...&#x  & |  1  1  0 |  * 24   *  *  * |  0  5   0  0  0 | 0  5  0
.oo..3.oo..5.oo..&#x  & |  0  1  1 |  *  * 120  *  * |  0  1   2  1  0 | 0  2  2
.o.o.3.o.o.5.o.o.&#x    |  0  2  0 |  *  *   * 12  * |  0  0   0  5  0 | 0  0  5
..... ..x.. .....       |  0  0  2 |  *  *   *  * 60 |  0  0   2  0  1 | 0  2  1
------------------------+----------+-----------------+-----------------+--------
x....3o.... .....     & |  3  0  0 |  3  0   0  0  0 | 40  *   *  *  * | 1  1  0
xfo.. ..... .....&#xt & |  2  2  1 |  1  2   2  0  0 |  * 60   *  *  * | 0  2  0
..... .ox.. .....&#x  & |  0  1  2 |  0  0   2  0  1 |  *  * 120  *  * | 0  1  1
.ooo.3.ooo.5.ooo.&#x    |  0  2  1 |  0  0   2  1  0 |  *  *   * 60  * | 0  0  2
..o..3..x.. .....       |  0  0  3 |  0  0   0  0  3 |  *  *   *  * 20 | 0  2  0
------------------------+----------+-----------------+-----------------+--------
x....3o....5o....     & ♦ 12  0  0 | 30  0   0  0  0 | 20  0   0  0  0 | 2  *  *
xfo..3oox.. .....&#xt & ♦  3  3  3 |  3  3   6  0  3 |  1  3   3  0  1 | * 40  *
..... .oxo. .....&#x    ♦  0  2  2 |  0  0   4  1  1 |  0  0   2  2  0 | *  * 60
```