Acronym chon
Name cubic honeycomb,
3D hypercubical honeycomb3),
Voronoi complex of primitive cubical lattice,
Delone complex of primitive cubical lattice
 
 © ©    ©
Vertex figure
 ©
Vertex layers
(first ones only)
LayerSymmetrySubsymmetries
 o4o3o4oo4o3o .. o3o4o
1x4o3o4ox4o3o .
cell first
. o3o4o
vertex first
2x4o3q .. q3o4o
vertex figure
3x4q3o .. o3q4o
4ax4o3Q .. o3o4u
4bd4o3o .
.........
(Q=2q, d=u+x=3x)
Coordinates (i, j, k)           i.e. all integer touples
Dual (selfdual)
Confer
more general:
xPo3o...o3o4o   xPo3o...o3oPxQ*a  
related tesselations:
batch (Voronoi complex of bcc lattice)   octet (Delone complex of fcc lattice)   cuhsquah   squattip  
general polytopal classes:
hypercubical honeycomb   partial Stott expansions   noble polytopes  
External
links
wikipedia   wikipedia   polytopewiki
 ©    ©

The Voronoi complex and the Delone complex of the primitive cubic lattice are relatively shifted copies of this cubic honeycomb.

The cubes of this honeycomb could be alternatedly rejected, then re-connected by means of squats instead; this is what cuhsquah would be.

This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is squattip.

A facial subset, built from the lacing squares of the 4-prismatic cells of x4o3o4x each, such that just 6 of those squares remain at each vertex, by itself describes the regular infinite skew polyhedron x4o6o|4, a modwrap of the hyperbolical tiling x4o6o.


Incidence matrix according to Dynkin symbol

x4o3o4o   (N → ∞)

. . . . | N   6 | 12 | 8
--------+---+----+----+--
x . . . | 2 | 3N |  4 | 4
--------+---+----+----+--
x4o . . | 4 |  4 | 3N | 2
--------+---+----+----+--
x4o3o .  8 | 12 |  6 | N

snubbed forms: s4o3o4o

x4o3o4x   (N → ∞)

. . . . | 8N    3   3 |  3   6  3 | 1  3  3 1
--------+----+---------+-----------+----------
x . . . |  2 | 12N   * |  2   2  0 | 1  2  1 0
. . . x |  2 |   * 12N |  0   2  2 | 0  1  2 1
--------+----+---------+-----------+----------
x4o . . |  4 |   4   0 | 6N   *  * | 1  1  0 0
x . . x |  4 |   2   2 |  * 12N  * | 0  1  1 0
. . o4x |  4 |   0   4 |  *   * 6N | 0  0  1 1
--------+----+---------+-----------+----------
x4o3o .   8 |  12   0 |  6   0  0 | N  *  * *
x4o . x   8 |   8   4 |  2   4  0 | * 3N  * *
x . o4x   8 |   4   8 |  0   4  2 | *  * 3N *
. o3o4x   8 |   0  12 |  0   0  6 | *  *  * N

snubbed forms: s4o3o4x, s4o3o4s, s4o3o4s'

o3o3o *b4x   (N → ∞)

. . .    . | 2N   6 | 12 | 4 4
-----------+----+----+----+----
. . .    x |  2 | 6N |  4 | 2 2
-----------+----+----+----+----
. o . *b4x |  4 |  4 | 6N | 1 1
-----------+----+----+----+----
o3o . *b4x   8 | 12 |  6 | N *
. o3o *b4x   8 | 12 |  6 | * N

snubbed forms: o3o3o *b4s

x4o3o4/3o   (N → ∞)

. . .   . | N   6 | 12 | 8
----------+---+----+----+--
x . .   . | 2 | 3N |  4 | 4
----------+---+----+----+--
x4o .   . | 4 |  4 | 3N | 2
----------+---+----+----+--
x4o3o   .  8 | 12 |  6 | N

o4o3o4/3x   (N → ∞)

. . .   . | N   6 | 12 | 8
----------+---+----+----+--
. . .   x | 2 | 3N |  4 | 4
----------+---+----+----+--
. . o4/3x | 4 |  4 | 3N | 2
----------+---+----+----+--
. o3o4/3x  8 | 12 |  6 | N

x4o3o4/3x   (N → ∞)

. . .   . | 8N    3   3 |  3   6  3 | 1  3  3 1
----------+----+---------+-----------+----------
x . .   . |  2 | 12N   * |  2   2  0 | 1  2  1 0
. . .   x |  2 |   * 12N |  0   2  2 | 0  1  2 1
----------+----+---------+-----------+----------
x4o .   . |  4 |   4   0 | 6N   *  * | 1  1  0 0
x . .   x |  4 |   2   2 |  * 12N  * | 0  1  1 0
. . o4/3x |  4 |   0   4 |  *   * 6N | 0  0  1 1
----------+----+---------+-----------+----------
x4o3o   .   8 |  12   0 |  6   0  0 | N  *  * *
x4o .   x   8 |   8   4 |  2   4  0 | * 3N  * *
x . o4/3x   8 |   4   8 |  0   4  2 | *  * 3N *
. o3o4/3x   8 |   0  12 |  0   0  6 | *  *  * N

x4/3o3o4/3o   (N → ∞)

.   . .   . | N   6 | 12 | 8
------------+---+----+----+--
x   . .   . | 2 | 3N |  4 | 4
------------+---+----+----+--
x4/3o .   . | 4 |  4 | 3N | 2
------------+---+----+----+--
x4/3o3o   .  8 | 12 |  6 | N

x4/3o3o4/3x   (N → ∞)

.   . .   . | 8N    3   3 |  3   6  3 | 1  3  3 1
------------+----+---------+-----------+----------
x   . .   . |  2 | 12N   * |  2   2  0 | 1  2  1 0
.   . .   x |  2 |   * 12N |  0   2  2 | 0  1  2 1
------------+----+---------+-----------+----------
x4/3o .   . |  4 |   4   0 | 6N   *  * | 1  1  0 0
x   . .   x |  4 |   2   2 |  * 12N  * | 0  1  1 0
.   . o4/3x |  4 |   0   4 |  *   * 6N | 0  0  1 1
------------+----+---------+-----------+----------
x4/3o3o   .   8 |  12   0 |  6   0  0 | N  *  * *
x4/3o .   x   8 |   8   4 |  2   4  0 | * 3N  * *
x   . o4/3x   8 |   4   8 |  0   4  2 | *  * 3N *
.   o3o4/3x   8 |   0  12 |  0   0  6 | *  *  * N

o3o3o *b4/3x   (N → ∞)

. . .      . | 2N   6 | 12 | 4 4
-------------+----+----+----+----
. . .      x |  2 | 6N |  4 | 2 2
-------------+----+----+----+----
. o . *b4/3x |  4 |  4 | 6N | 1 1
-------------+----+----+----+----
o3o . *b4/3x   8 | 12 |  6 | N *
. o3o *b4/3x   8 | 12 |  6 | * N

snubbed forms: o3o3o *b4s

x∞o x4o4o   (N → ∞)

. . . . . | N  2  4 |  8 4 | 8
----------+---+------+------+--
x . . . . | 2 | N  * |  4 0 | 4
. . x . . | 2 | * 2N |  2 2 | 4
----------+---+------+------+--
x . x . . | 4 | 2  2 | 2N * | 2
. . x4o . | 4 | 0  4 |  * N | 2
----------+---+------+------+--
x . x4o .  8 | 4  8 |  4 2 | N

snubbed forms: s∞o2s4o4o

x∞o o4x4o   (N → ∞)

. . . . . | 2N   2  4 |  8 2 2 | 4 4
----------+----+-------+--------+----
x . . . . |  2 | 2N  * |  4 0 0 | 2 2
. . . x . |  2 |  * 4N |  2 1 1 | 2 2
----------+----+-------+--------+----
x . . x . |  4 |  2  2 | 4N * * | 1 1
. . o4x . |  4 |  0  4 |  * N * | 2 0
. . . x4o |  4 |  0  4 |  * * N | 0 2
----------+----+-------+--------+----
x . o4x .   8 |  4  8 |  4 2 0 | N *
x . . x4o   8 |  4  8 |  4 0 2 | * N

snubbed forms: s∞o2o4s4o

x∞o x4o4x   (N → ∞)

. . . . . | 4N   2  2  2 |  4  4 1  2 1 | 2  4 2
----------+----+----------+--------------+-------
x . . . . |  2 | 4N  *  * |  2  2 0  0 0 | 1  2 1
. . x . . |  2 |  * 4N  * |  2  0 1  1 0 | 2  2 0
. . . . x |  2 |  *  * 4N |  0  2 0  1 1 | 0  2 2
----------+----+----------+--------------+-------
x . x . . |  4 |  2  2  0 | 4N  * *  * * | 1  1 0
x . . . x |  4 |  2  0  2 |  * 4N *  * * | 0  1 1
. . x4o . |  4 |  0  4  0 |  *  * N  * * | 2  0 0
. . x . x |  4 |  0  2  2 |  *  * * 2N * | 0  2 0
. . . o4x |  4 |  0  0  4 |  *  * *  * N | 0  0 2
----------+----+----------+--------------+-------
x . x4o .   8 |  4  8  0 |  4  0 2  0 0 | N  * *
x . x . x   8 |  4  4  4 |  2  2 0  2 0 | * 2N *
x . . o4x   8 |  4  0  8 |  0  4 0  0 2 | *  * N

snubbed forms: s∞o2s4o4x

x∞x x4o4o   (N → ∞)

. . . . . | 2N  1 1  4 |  4  4  4 | 4 4
----------+----+--------+----------+----
x . . . . |  2 | N *  * |  4  0  0 | 4 0
. x . . . |  2 | * N  * |  4  0  0 | 0 4
. . x . . |  2 | * * 4N |  1  1  2 | 2 2
----------+----+--------+----------+----
x . x . . |  4 | 2 0  2 | 2N  *  * | 2 0
. x x . . |  4 | 0 2  2 |  * 2N  * | 0 2
. . x4o . |  4 | 0 0  4 |  *  * 2N | 1 1
----------+----+--------+----------+----
x . x4o .   8 | 4 0  8 |  4  0  2 | N
. x x4o .   8 | 0 4  8 |  0  4  2 | N

snubbed forms: s∞x2s4o4o

x∞x o4x4o   (N → ∞)

. . . . . | 4N   1  1  4 |  4  4  2  2 | 2 2 2 2
----------+----+----------+-------------+--------
x . . . . |  2 | 2N  *  * |  4  0  0  0 | 2 2 0 0
. x . . . |  2 |  * 2N  * |  0  4  0  0 | 0 0 2 2
. . . x . |  2 |  *  * 8N |  1  1  1  1 | 1 1 1 1
----------+----+----------+-------------+--------
x . . x . |  4 |  2  0  2 | 4N  *  *  * | 1 1 0 0
. x . x . |  4 |  0  2  2 |  * 4N  *  * | 0 0 1 1
. . o4x . |  4 |  0  0  4 |  *  * 2N  * | 1 0 1 0
. . . x4o |  4 |  0  0  4 |  *  *  * 2N | 0 1 0 1
----------+----+----------+-------------+--------
x . o4x .   8 |  4  0  8 |  4  0  2  0 | N * * *
x . . x4o   8 |  4  0  8 |  4  0  0  2 | * N * *
. x o4x .   8 |  0  4  8 |  0  4  2  0 | * * N *
. x . x4o   8 |  0  4  8 |  0  4  0  2 | * * * N

snubbed forms: s∞x2o4s4o

x∞x x4o4x   (N → ∞)

. . . . . | 8N   1  1  2  2 |  2  2  2  2  1  2  1 | 1  2 1 1  2 1
----------+----+-------------+----------------------+--------------
x . . . . |  2 | 4N  *  *  * |  2  2  0  0  0  0  0 | 1  2 1 0  0 0
. x . . . |  2 |  * 4N  *  * |  0  0  2  2  0  0  0 | 0  0 0 1  2 1
. . x . . |  2 |  *  * 8N  * |  1  0  1  0  1  1  0 | 1  1 0 1  1 0
. . . . x |  2 |  *  *  * 8N |  0  1  0  1  0  1  1 | 0  1 1 0  1 1
----------+----+-------------+----------------------+--------------
x . x . . |  4 |  2  0  2  0 | 4N  *  *  *  *  *  * | 1  1 0 0  0 0
x . . . x |  4 |  2  0  0  2 |  * 4N  *  *  *  *  * | 0  1 1 0  0 0
. x x . . |  4 |  0  2  2  0 |  *  * 4N  *  *  *  * | 0  0 0 1  1 0
. x . . x |  4 |  0  2  0  2 |  *  *  * 4N  *  *  * | 0  0 0 0  1 1
. . x4o . |  4 |  0  0  4  0 |  *  *  *  * 2N  *  * | 1  0 0 1  0 0
. . x . x |  4 |  0  0  2  2 |  *  *  *  *  * 4N  * | 0  1 0 0  1 0
. . . o4x |  4 |  0  0  0  4 |  *  *  *  *  *  * 2N | 0  0 1 0  0 1
----------+----+-------------+----------------------+--------------
x . x4o .   8 |  4  0  8  0 |  4  0  0  0  2  0  0 | N  * * *  * *
x . x . x   8 |  4  0  4  4 |  2  2  0  0  0  2  0 | * 2N * *  * *
x . . o4x   8 |  4  0  0  8 |  0  4  0  0  0  0  2 | *  * N *  * *
. x x4o .   8 |  0  4  8  0 |  0  0  4  0  2  0  0 | *  * * N  * *
. x x . x   8 |  0  4  4  4 |  0  0  2  2  0  2  0 | *  * * * 2N *
. x . o4x   8 |  0  4  0  8 |  0  0  0  4  0  0  2 | *  * * *  * N

x∞o x∞o x∞o   (N → ∞)

. . . . . . | N  2 2 2 | 4 4 4 | 8
------------+---+-------+-------+--
x . . . . . | 2 | N * * | 2 2 0 | 4
. . x . . . | 2 | * N * | 2 0 2 | 4
. . . . x . | 2 | * * N | 0 2 2 | 4
------------+---+-------+-------+--
x . x . . . | 4 | 2 2 0 | N * * | 2
x . . . x . | 4 | 2 0 2 | * N * | 2
. . x . x . | 4 | 0 2 2 | * * N | 2
------------+---+-------+-------+--
x . x . x .  8 | 4 4 4 | 2 2 2 | N

x∞x x∞o x∞o   (N → ∞)

. . . . . . | 2N  1 1  2  2 | 2 2 2 2  4 | 4 4
------------+----+-----------+------------+----
x . . . . . |  2 | N *  *  * | 2 2 0 0  0 | 4 0
. x . . . . |  2 | * N  *  * | 0 0 2 2  0 | 0 4
. . x . . . |  2 | * * 2N  * | 1 0 1 0  2 | 2 2
. . . . x . |  2 | * *  * 2N | 0 1 0 1  2 | 2 2
------------+----+-----------+------------+----
x . x . . . |  4 | 2 0  2  0 | N * * *  * | 2 0
x . . . x . |  4 | 2 0  0  2 | * N * *  * | 2 0
. x x . . . |  4 | 0 2  2  0 | * * N *  * | 0 2
. x . . x . |  4 | 0 2  0  2 | * * * N  * | 0 2
. . x . x . |  4 | 0 0  2  2 | * * * * 2N | 1 1
------------+----+-----------+------------+----
x . x . x .   8 | 4 0  4  4 | 2 2 0 0  2 | N *
. x x . x .   8 | 0 4  4  4 | 0 0 2 2  2 | * N

x∞x x∞x x∞o   (N → ∞)

. . . . . . | 4N   1  1  1  1  2 | 1 1  2 1 1  2  2  2 | 2 2 2 2
------------+----+----------------+---------------------+--------
x . . . . . |  2 | 2N  *  *  *  * | 1 1  2 0 0  0  0  0 | 2 2 0 0
. x . . . . |  2 |  * 2N  *  *  * | 0 0  0 1 1  2  0  0 | 0 0 2 2
. . x . . . |  2 |  *  * 2N  *  * | 1 0  0 1 0  0  2  0 | 2 0 2 0
. . . x . . |  2 |  *  *  * 2N  * | 0 1  0 0 1  0  0  2 | 0 2 0 2
. . . . x . |  2 |  *  *  *  * 4N | 0 0  1 0 0  1  1  1 | 1 1 1 1
------------+----+----------------+---------------------+--------
x . x . . . |  4 |  2  0  2  0  0 | N *  * * *  *  *  * | 2 0 0 0
x . . x . . |  4 |  2  0  0  2  0 | * N  * * *  *  *  * | 0 2 0 0
x . . . x . |  4 |  2  0  0  0  2 | * * 2N * *  *  *  * | 1 1 0 0
. x x . . . |  4 |  0  2  2  0  0 | * *  * N *  *  *  * | 0 0 2 0
. x . x . . |  4 |  0  2  0  2  0 | * *  * * N  *  *  * | 0 0 0 2
. x . . x . |  4 |  0  2  0  0  2 | * *  * * * 2N  *  * | 0 0 1 1
. . x . x . |  4 |  0  0  2  0  2 | * *  * * *  * 2N  * | 1 0 1 0
. . . x x . |  4 |  0  0  0  2  2 | * *  * * *  *  * 2N | 0 1 0 1
------------+----+----------------+---------------------+--------
x . x . x .   8 |  4  0  4  0  4 | 2 0  2 0 0  0  2  0 | N * * *
x . . x x .   8 |  4  0  0  4  4 | 0 2  2 0 0  0  0  2 | * N * *
. x x . x .   8 |  0  4  4  0  4 | 0 0  0 2 0  2  2  0 | * * N *
. x . x x .   8 |  0  4  0  4  4 | 0 0  0 0 2  2  0  2 | * * * N

x∞x x∞x x∞x   (N → ∞)

. . . . . . | 8N   1  1  1  1  1  1 |  1  1  1  1  1  1  1  1  1  1  1  1 | 1 1 1 1 1 1 1 1
------------+----+-------------------+-------------------------------------+----------------
x . . . . . |  2 | 4N  *  *  *  *  * |  1  1  1  1  0  0  0  0  0  0  0  0 | 1 1 1 1 0 0 0 0
. x . . . . |  2 |  * 4N  *  *  *  * |  0  0  0  0  1  1  1  1  0  0  0  0 | 0 0 0 0 1 1 1 1
. . x . . . |  2 |  *  * 4N  *  *  * |  1  0  0  0  1  0  0  0  1  1  0  0 | 1 1 0 0 1 1 0 0
. . . x . . |  2 |  *  *  * 4N  *  * |  0  1  0  0  0  1  0  0  0  0  1  1 | 0 0 1 1 0 0 1 1
. . . . x . |  2 |  *  *  *  * 4N  * |  0  0  1  0  0  0  1  0  1  0  1  0 | 1 0 1 0 1 0 1 0
. . . . . x |  2 |  *  *  *  *  * 4N |  0  0  0  1  0  0  0  1  0  1  0  1 | 0 1 0 1 0 1 0 1
------------+----+-------------------+-------------------------------------+----------------
x . x . . . |  4 |  2  0  2  0  0  0 | 2N  *  *  *  *  *  *  *  *  *  *  * | 1 1 0 0 0 0 0 0
x . . x . . |  4 |  2  0  0  2  0  0 |  * 2N  *  *  *  *  *  *  *  *  *  * | 0 0 1 1 0 0 0 0
x . . . x . |  4 |  2  0  0  0  2  0 |  *  * 2N  *  *  *  *  *  *  *  *  * | 1 0 1 0 0 0 0 0
x . . . . x |  4 |  2  0  0  0  0  2 |  *  *  * 2N  *  *  *  *  *  *  *  * | 0 1 0 1 0 0 0 0
. x x . . . |  4 |  0  2  2  0  0  0 |  *  *  *  * 2N  *  *  *  *  *  *  * | 0 0 0 0 1 1 0 0
. x . x . . |  4 |  0  2  0  2  0  0 |  *  *  *  *  * 2N  *  *  *  *  *  * | 0 0 0 0 0 0 1 1
. x . . x . |  4 |  0  2  0  0  2  0 |  *  *  *  *  *  * 2N  *  *  *  *  * | 0 0 0 0 1 0 1 0
. x . . . x |  4 |  0  2  0  0  0  2 |  *  *  *  *  *  *  * 2N  *  *  *  * | 0 0 0 0 0 1 0 1
. . x . x . |  4 |  0  0  2  0  2  0 |  *  *  *  *  *  *  *  * 2N  *  *  * | 1 0 0 0 1 0 0 0
. . x . . x |  4 |  0  0  2  0  0  2 |  *  *  *  *  *  *  *  *  * 2N  *  * | 0 1 0 0 0 1 0 0
. . . x x . |  4 |  0  0  0  2  2  0 |  *  *  *  *  *  *  *  *  *  * 2N  * | 0 0 1 0 0 0 1 0
. . . x . x |  4 |  0  0  0  2  0  2 |  *  *  *  *  *  *  *  *  *  *  * 2N | 0 0 0 1 0 0 0 1
------------+----+-------------------+-------------------------------------+----------------
x . x . x .   8 |  4  0  4  0  4  0 |  2  0  2  0  0  0  0  0  2  0  0  0 | N * * * * * * *
x . x . . x   8 |  4  0  4  0  0  4 |  2  0  0  2  0  0  0  0  0  2  0  0 | * N * * * * * *
x . . x x .   8 |  4  0  0  4  4  0 |  0  2  2  0  0  0  0  0  0  0  2  0 | * * N * * * * *
x . . x . x   8 |  4  0  0  4  0  4 |  0  2  0  2  0  0  0  0  0  0  0  2 | * * * N * * * *
. x x . x .   8 |  0  4  4  0  4  0 |  0  0  0  0  2  0  2  0  2  0  0  0 | * * * * N * * *
. x x . . x   8 |  0  4  4  0  0  4 |  0  0  0  0  2  0  0  2  0  2  0  0 | * * * * * N * *
. x . x x .   8 |  0  4  0  4  4  0 |  0  0  0  0  0  2  2  0  0  0  2  0 | * * * * * * N *
. x . x . x   8 |  0  4  0  4  0  4 |  0  0  0  0  0  2  0  2  0  0  0  2 | * * * * * * * N

qo3oo3oq3oo3*a&#zx   (N → ∞)   → height = 0
(tegum sum of 2 alternate q-octets)

o.3o.3o.3o.3*a     | N *   6 | 12 | 4 4
.o3.o3.o3.o3*a     | * N   6 | 12 | 4 4
-------------------+-----+----+----+----
oo3oo3oo3oo3*a&#x  | 1 1 | 6N |  4 | 2 2
-------------------+-----+----+----+----
qo .. oq ..   &#zx | 2 2 |  4 | 6N | 1 1
-------------------+-----+----+----+----
qo3oo3oq ..   &#x   4 4 | 12 |  6 | N *
qo .. oq3oo3*a&#x   4 4 | 12 |  6 | * N

reflecting the known fact that the primitive cubic lattice is the sum of 2 alternate fcc lattices
respectively that the fcc lattice is nothing but the alternation of the primitive cubic one

:x:4:o:4:o:&##x   (N → ∞)   → height = 1

 o 4 o 4 o     | N   4 2 | 4  8 | 8
---------------+---+------+------+--
 x   .   .     | 2 | 2N * | 2  2 | 4
:o:4:o:4:o:&#x | 2 |  * N | 0  4 | 4
---------------+---+------+------+--
 x 4 o   .     | 4 |  4 0 | N  * | 2
:x:  .   . &#x | 4 |  2 2 | * 2N | 2
---------------+---+------+------+--
:x:4:o:  . &#x  8 |  8 4 | 2  4 | N

:qoo:3:oqo:3:ooq:3*a&##x   (N → ∞)   → all heights = 1/sqrt(3) = 0.577350

 o.. 3 o.. 3 o.. 3*a     | N * *   3  0  3 |  3  6  3 | 3 3 2
 .o. 3 .o. 3 .o. 3*a     | * N *   3  3  0 |  6  3  3 | 3 2 3
 ..o 3 ..o 3 ..o 3*a     | * * N   0  3  3 |  3  3  6 | 2 3 3
-------------------------+-------+----------+----------+------
 oo. 3 oo. 3 oo. 3*a&#x  | 1 1 0 | 3N  *  * |  2  2  0 | 2 1 1
 .oo 3 .oo 3 .oo 3*a&#x  | 0 1 1 |  * 3N  * |  2  0  2 | 1 1 2
:o.o:3:o.o:3:o.o:3*a&#x  | 1 0 1 |  *  * 3N |  0  2  2 | 1 2 1
-------------------------+-------+----------+----------+------
 ...   oqo   ...    &#xt | 1 2 1 |  2  2  0 | 3N  *  * | 1 0 1
:qoo:  ...   ...    &#xt | 2 1 1 |  2  0  2 |  * 3N  * | 1 1 0
 ...   ...  :ooq:   &#xt | 1 1 2 |  0  2  2 |  *  * 3N | 0 1 1
-------------------------+-------+----------+----------+------
:qoo:3:oqo:  ...    &#xt  3 3 2 |  6  3  3 |  3  3  0 | N * *
:qoo:  ...  :ooq:3*a&#xt  3 2 3 |  3  3  6 |  0  3  3 | * N *
 ...  :oqo:3:ooq:   &#xt  2 3 3 |  3  6  3 |  3  0  3 | * * N

© 2004-2022
top of page