Acronym cubico
Name cube-icositetrachoron duoprism
Circumradius sqrt(7)/2 = 1.322876
Volume 2
Face vector 192, 1056, 2064, 1944, 968, 252, 30
Confer
uniform relative:
lin  
general polytopal classes:
Wythoffian polyexa   segmentoexa  

Incidence matrix according to Dynkin symbol

o3o4x x3o4o3o

. . . . . . . | 192 |   3   8 |   3   24  12 |  1  24   36   6 |  8  36  18 1 | 12  18  3 |  6 3
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
. . x . . . . |   2 | 288   * |   2    8   0 |  1  16   12   0 |  8  24   6 0 | 12  12  1 |  6 2
. . . x . . . |   2 |   * 768 |   0    3   3 |  0   3    9   3 |  1   9   9 1 |  3   9  3 |  3 3
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
. o4x . . . . |   4 |   4   0 | 144    *   * |  1   8    0   0 |  8  12   0 0 | 12   6  0 |  6 1
. . x x . . . |   4 |   2   2 |   * 1152   * |  0   2    3   0 |  1   6   3 0 |  3   6  1 |  3 2
. . . x3o . . |   3 |   0   3 |   *    * 768 |  0   0    3   2 |  0   3   6 1 |  1   6  3 |  2 3
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
o3o4x . . . .    8 |  12   0 |   6    0   0 | 24   *    *   *   8   0   0 0 | 12   0  0 |  6 0
. o4x x . . .    8 |   8   4 |   2    4   0 |  * 576    *   * |  1   3   0 0 |  3   3  0 |  3 1
. . x x3o . .    6 |   3   6 |   0    3   2 |  *   * 1152   * |  0   2   2 0 |  1   4  1 |  2 2
. . . x3o4o .    6 |   0  12 |   0    0   8 |  *   *    * 192 |  0   0   3 1 |  0   3  3 |  1 3
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
o3o4x x . . .   16 |  24   8 |  12   12   0 |  2   6    0   0 | 96   *   * * |  3   0  0 |  3 0
. o4x x3o . .   12 |  12  12 |   3   12   4 |  0   3    4   0 |  * 576   * * |  1   2  0 |  2 1
. . x x3o4o .   12 |   6  24 |   0   12  16 |  0   0    8   2 |  *   * 288 * |  0   2  1 |  1 2
. . . x3o4o3o   24 |   0  96 |   0    0  96 |  0   0    0  24 |  *   *   * 8 |  0   0  3 |  0 3
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
o3o4x x3o . .   24 |  36  24 |  18   36   8 |  3  18   12   0 |  3   6   0 0 | 96   *  * |  2 0
. o4x x3o4o .   24 |  24  48 |   6   48  32 |  0  12   32   4 |  0   8   4 0 |  * 144  * |  1 1
. . x x3o4o3o   48 |  24 192 |   0   96 192 |  0   0   96  48 |  0   0  24 2 |  *   * 12 |  0 2
--------------+-----+---------+--------------+-----------------+--------------+-----------+-----
o3o4x x3o4o .   48 |  72  96 |  36  144  64 |  6  72   96   8 | 12  48  12 0 |  8   6  0 | 24 *
. o4x x3o4o3o   96 |  96 384 |  24  384 384 |  0  96  384  96 |  0  96  96 4 |  0  24  4 |  * 6

o3o4x o3x3o4o

. . . . . . . | 192 |   3   8 |   3   24   4   8 |  1  24  12  24   4  2 |  8  12  24  12  6 1 |  4  8 12  6  3 |  4 2 3
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
. . x . . . . |   2 | 288   * |   2    8   0   0 |  1  16   4   8   0  0 |  8   8  16   4  2 0 |  4  8  8  4  1 |  4 2 2
. . . . x . . |   2 |   * 768 |   0    3   1   2 |  0   3   3   6   2  1 |  1   3   6   6  3 1 |  1  2  6  3  3 |  2 1 3
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
. o4x . . . . |   4 |   4   0 | 144    *   *   * |  1   8   0   0   0  0 |  8   4   8   0  0 0 |  4  8  4  2  0 |  4 2 1
. . x . x . . |   4 |   2   2 |   * 1152   *   * |  0   2   1   2   0  0 |  1   2   4   2  1 0 |  1  2  4  2  1 |  2 1 2
. . . o3x . . |   3 |   0   3 |   *    * 256   * |  0   0   3   0   2  0 |  0   3   0   6  0 1 |  1  0  6  0  3 |  2 0 3
. . . . x3o . |   3 |   0   3 |   *    *   * 512 |  0   0   0   3   1  1 |  0   0   3   3  3 1 |  0  1  3  3  3 |  1 1 3
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
o3o4x . . . .    8 |  12   0 |   6    0   0   0 | 24   *   *   *   *  *   8   0   0   0  0 0 |  4  8  0  0  0 |  4 2 0
. o4x . x . .    8 |   8   4 |   2    4   0   0 |  * 576   *   *   *  * |  1   1   2   0  0 0 |  1  2  2  1  0 |  2 1 1
. . x o3x . .    6 |   3   6 |   0    3   2   0 |  *   * 384   *   *  * |  0   2   0   2  0 0 |  1  0  4  0  1 |  2 0 2
. . x . x3o .    6 |   3   6 |   0    3   0   2 |  *   *   * 768   *  * |  0   0   2   1  1 0 |  0  1  2  2  1 |  1 1 2
. . . o3x3o .    6 |   0  12 |   0    0   4   4 |  *   *   *   * 128  * |  0   0   0   3  0 1 |  0  0  3  0  3 |  1 0 3
. . . . x3o4o    6 |   0  12 |   0    0   0   8 |  *   *   *   *   * 64 |  0   0   0   0  3 1 |  0  0  0  3  3 |  0 1 3
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
o3o4x . x . .   16 |  24   8 |  12   12   0   0 |  2   6   0   0   0  0 | 96   *   *   *  * * |  1  2  0  0  0 |  2 1 0
. o4x o3x . .   12 |  12  12 |   3   12   4   0 |  0   3   4   0   0  0 |  * 192   *   *  * * |  1  0  2  0  0 |  2 0 1
. o4x . x3o .   12 |  12  12 |   3   12   0   4 |  0   3   0   4   0  0 |  *   * 384   *  * * |  0  1  1  1  0 |  1 1 1
. . x o3x3o .   12 |   6  24 |   0   12   8   8 |  0   0   4   4   2  0 |  *   *   * 192  * * |  0  0  2  0  1 |  1 0 2
. . x . x3o4o   12 |   6  24 |   0   12   0  16 |  0   0   0   8   0  2 |  *   *   *   * 96 * |  0  0  0  2  1 |  0 1 2
. . . o3x3o4o   24 |   0  96 |   0    0  32  64 |  0   0   0   0  16  8 |  *   *   *   *  * 8 |  0  0  0  0  3 |  0 0 3
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
o3o4x o3x . .   24 |  36  24 |  18   36   8   0 |  3  18  12   0   0  0 |  3   6   0   0  0 0 | 32  *  *  *  * |  2 0 0
o3o4x . x3o .   24 |  36  24 |  18   36   0   8 |  3  18   0  12   0  0 |  3   0   6   0  0 0 |  * 64  *  *  * |  1 1 0
. o4x o3x3o .   24 |  24  48 |   6   48  16  16 |  0  12  16  16   4  0 |  0   4   4   4  0 0 |  *  * 96  *  * |  1 0 1
. o4x . x3o4o   24 |  24  48 |   6   48   0  32 |  0  12   0  32   0  4 |  0   0   8   0  4 0 |  *  *  * 48  * |  0 1 1
. . x o3x3o4o   48 |  24 192 |   0   96  64 128 |  0   0  32  64  32 16 |  0   0   0  16  8 2 |  *  *  *  * 12 |  0 0 2
--------------+-----+---------+------------------+-----------------------+---------------------+----------------+-------
o3o4x o3x3o .   48 |  72  96 |  36  144  32  32 |  6  72  48  48   8  0 | 12  24  24  12  0 0 |  4  4  6  0  0 | 16 * *
o3o4x . x3o4o   48 |  72  96 |  36  144   0  64 |  6  72   0  96   0  8 | 12   0  48   0 12 0 |  0  8  0  6  0 |  * 8 *
. o4x o3x3o4o   96 |  96 384 |  24  384 128 256 |  0  96 128 256  64 32 |  0  32  64  64 32 4 |  0  0 16  8  4 |  * * 6

o3o4x o3x3o *e3o

...

x x4o x3o4o3o

...

x x4o o3x3o4o

...

x x4o o3x3o *e3o

...

x x x x3o4o3o

...

x x x o3x3o4o

...

x x x o3x3o *e3o

...

xx4oo xx3oo4oo3oo&#x   → height = 1
(squico || squico)

...

xx4oo oo3xx3oo4oo&#x   → height = 1
(squico || squico)

...

xx4oo oo3xx3oo *d3oo&#x   → height = 1
(squico || squico)

...

xx xx xx3oo4oo3oo&#x   → height = 1
(squico || squico)

...

xx xx oo3xx3oo4oo&#x   → height = 1
(squico || squico)

...

xx xx oo3xx3oo *d3oo&#x   → height = 1
(squico || squico)

...

ooo3ooo4xxx xox3oxo4ooo&#xt   → both heights = 1/sqrt(2) = 0.707107
(octcube || cocube || octcube)

...

© 2004-2025
top of page