Acronym | cubico |
Name | cube-icositetrachoron duoprism |
Circumradius | sqrt(7)/2 = 1.322876 |
Volume | 2 |
Face vector | 192, 1056, 2064, 1944, 968, 252, 30 |
Confer |
|
Incidence matrix according to Dynkin symbol
o3o4x x3o4o3o . . . . . . . | 192 | 3 8 | 3 24 12 | 1 24 36 6 | 8 36 18 1 | 12 18 3 | 6 3 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- . . x . . . . | 2 | 288 * | 2 8 0 | 1 16 12 0 | 8 24 6 0 | 12 12 1 | 6 2 . . . x . . . | 2 | * 768 | 0 3 3 | 0 3 9 3 | 1 9 9 1 | 3 9 3 | 3 3 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- . o4x . . . . | 4 | 4 0 | 144 * * | 1 8 0 0 | 8 12 0 0 | 12 6 0 | 6 1 . . x x . . . | 4 | 2 2 | * 1152 * | 0 2 3 0 | 1 6 3 0 | 3 6 1 | 3 2 . . . x3o . . | 3 | 0 3 | * * 768 | 0 0 3 2 | 0 3 6 1 | 1 6 3 | 2 3 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- o3o4x . . . . ♦ 8 | 12 0 | 6 0 0 | 24 * * * ♦ 8 0 0 0 | 12 0 0 | 6 0 . o4x x . . . ♦ 8 | 8 4 | 2 4 0 | * 576 * * | 1 3 0 0 | 3 3 0 | 3 1 . . x x3o . . ♦ 6 | 3 6 | 0 3 2 | * * 1152 * | 0 2 2 0 | 1 4 1 | 2 2 . . . x3o4o . ♦ 6 | 0 12 | 0 0 8 | * * * 192 | 0 0 3 1 | 0 3 3 | 1 3 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- o3o4x x . . . ♦ 16 | 24 8 | 12 12 0 | 2 6 0 0 | 96 * * * | 3 0 0 | 3 0 . o4x x3o . . ♦ 12 | 12 12 | 3 12 4 | 0 3 4 0 | * 576 * * | 1 2 0 | 2 1 . . x x3o4o . ♦ 12 | 6 24 | 0 12 16 | 0 0 8 2 | * * 288 * | 0 2 1 | 1 2 . . . x3o4o3o ♦ 24 | 0 96 | 0 0 96 | 0 0 0 24 | * * * 8 | 0 0 3 | 0 3 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- o3o4x x3o . . ♦ 24 | 36 24 | 18 36 8 | 3 18 12 0 | 3 6 0 0 | 96 * * | 2 0 . o4x x3o4o . ♦ 24 | 24 48 | 6 48 32 | 0 12 32 4 | 0 8 4 0 | * 144 * | 1 1 . . x x3o4o3o ♦ 48 | 24 192 | 0 96 192 | 0 0 96 48 | 0 0 24 2 | * * 12 | 0 2 --------------+-----+---------+--------------+-----------------+--------------+-----------+----- o3o4x x3o4o . ♦ 48 | 72 96 | 36 144 64 | 6 72 96 8 | 12 48 12 0 | 8 6 0 | 24 * . o4x x3o4o3o ♦ 96 | 96 384 | 24 384 384 | 0 96 384 96 | 0 96 96 4 | 0 24 4 | * 6
o3o4x o3x3o4o . . . . . . . | 192 | 3 8 | 3 24 4 8 | 1 24 12 24 4 2 | 8 12 24 12 6 1 | 4 8 12 6 3 | 4 2 3 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- . . x . . . . | 2 | 288 * | 2 8 0 0 | 1 16 4 8 0 0 | 8 8 16 4 2 0 | 4 8 8 4 1 | 4 2 2 . . . . x . . | 2 | * 768 | 0 3 1 2 | 0 3 3 6 2 1 | 1 3 6 6 3 1 | 1 2 6 3 3 | 2 1 3 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- . o4x . . . . | 4 | 4 0 | 144 * * * | 1 8 0 0 0 0 | 8 4 8 0 0 0 | 4 8 4 2 0 | 4 2 1 . . x . x . . | 4 | 2 2 | * 1152 * * | 0 2 1 2 0 0 | 1 2 4 2 1 0 | 1 2 4 2 1 | 2 1 2 . . . o3x . . | 3 | 0 3 | * * 256 * | 0 0 3 0 2 0 | 0 3 0 6 0 1 | 1 0 6 0 3 | 2 0 3 . . . . x3o . | 3 | 0 3 | * * * 512 | 0 0 0 3 1 1 | 0 0 3 3 3 1 | 0 1 3 3 3 | 1 1 3 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- o3o4x . . . . ♦ 8 | 12 0 | 6 0 0 0 | 24 * * * * * ♦ 8 0 0 0 0 0 | 4 8 0 0 0 | 4 2 0 . o4x . x . . ♦ 8 | 8 4 | 2 4 0 0 | * 576 * * * * | 1 1 2 0 0 0 | 1 2 2 1 0 | 2 1 1 . . x o3x . . ♦ 6 | 3 6 | 0 3 2 0 | * * 384 * * * | 0 2 0 2 0 0 | 1 0 4 0 1 | 2 0 2 . . x . x3o . ♦ 6 | 3 6 | 0 3 0 2 | * * * 768 * * | 0 0 2 1 1 0 | 0 1 2 2 1 | 1 1 2 . . . o3x3o . ♦ 6 | 0 12 | 0 0 4 4 | * * * * 128 * | 0 0 0 3 0 1 | 0 0 3 0 3 | 1 0 3 . . . . x3o4o ♦ 6 | 0 12 | 0 0 0 8 | * * * * * 64 | 0 0 0 0 3 1 | 0 0 0 3 3 | 0 1 3 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- o3o4x . x . . ♦ 16 | 24 8 | 12 12 0 0 | 2 6 0 0 0 0 | 96 * * * * * | 1 2 0 0 0 | 2 1 0 . o4x o3x . . ♦ 12 | 12 12 | 3 12 4 0 | 0 3 4 0 0 0 | * 192 * * * * | 1 0 2 0 0 | 2 0 1 . o4x . x3o . ♦ 12 | 12 12 | 3 12 0 4 | 0 3 0 4 0 0 | * * 384 * * * | 0 1 1 1 0 | 1 1 1 . . x o3x3o . ♦ 12 | 6 24 | 0 12 8 8 | 0 0 4 4 2 0 | * * * 192 * * | 0 0 2 0 1 | 1 0 2 . . x . x3o4o ♦ 12 | 6 24 | 0 12 0 16 | 0 0 0 8 0 2 | * * * * 96 * | 0 0 0 2 1 | 0 1 2 . . . o3x3o4o ♦ 24 | 0 96 | 0 0 32 64 | 0 0 0 0 16 8 | * * * * * 8 | 0 0 0 0 3 | 0 0 3 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- o3o4x o3x . . ♦ 24 | 36 24 | 18 36 8 0 | 3 18 12 0 0 0 | 3 6 0 0 0 0 | 32 * * * * | 2 0 0 o3o4x . x3o . ♦ 24 | 36 24 | 18 36 0 8 | 3 18 0 12 0 0 | 3 0 6 0 0 0 | * 64 * * * | 1 1 0 . o4x o3x3o . ♦ 24 | 24 48 | 6 48 16 16 | 0 12 16 16 4 0 | 0 4 4 4 0 0 | * * 96 * * | 1 0 1 . o4x . x3o4o ♦ 24 | 24 48 | 6 48 0 32 | 0 12 0 32 0 4 | 0 0 8 0 4 0 | * * * 48 * | 0 1 1 . . x o3x3o4o ♦ 48 | 24 192 | 0 96 64 128 | 0 0 32 64 32 16 | 0 0 0 16 8 2 | * * * * 12 | 0 0 2 --------------+-----+---------+------------------+-----------------------+---------------------+----------------+------- o3o4x o3x3o . ♦ 48 | 72 96 | 36 144 32 32 | 6 72 48 48 8 0 | 12 24 24 12 0 0 | 4 4 6 0 0 | 16 * * o3o4x . x3o4o ♦ 48 | 72 96 | 36 144 0 64 | 6 72 0 96 0 8 | 12 0 48 0 12 0 | 0 8 0 6 0 | * 8 * . o4x o3x3o4o ♦ 96 | 96 384 | 24 384 128 256 | 0 96 128 256 64 32 | 0 32 64 64 32 4 | 0 0 16 8 4 | * * 6
o3o4x o3x3o *e3o ...
x x4o x3o4o3o ...
x x4o o3x3o4o ...
x x4o o3x3o *e3o ...
x x x x3o4o3o ...
x x x o3x3o4o ...
x x x o3x3o *e3o ...
xx4oo xx3oo4oo3oo&#x → height = 1
(squico || squico)
...
xx4oo oo3xx3oo4oo&#x → height = 1
(squico || squico)
...
xx4oo oo3xx3oo *d3oo&#x → height = 1
(squico || squico)
...
xx xx xx3oo4oo3oo&#x → height = 1
(squico || squico)
...
xx xx oo3xx3oo4oo&#x → height = 1
(squico || squico)
...
xx xx oo3xx3oo *d3oo&#x → height = 1
(squico || squico)
...
ooo3ooo4xxx xox3oxo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (octcube || cocube || octcube) ...
© 2004-2025 | top of page |