Acronym distadedip Name decagon-decagram duoprism Circumradius sqrt(3) = 1.732051 Volume 25 sqrt(5)/4 = 13.975425 Dihedral angles at {10/3} between stiddip and stiddip:   144° at {4} between dip and dip:   90° at {10} between dip and dip:   72° Confer general duoprisms: n/d,m/b-dip Externallinks

Incidence matrix according to Dynkin symbol

```x10o x10/3o

.  . .    . | 100 |   2   2 |  1   4  1 |  2  2
------------+-----+---------+-----------+------
x  . .    . |   2 | 100   * |  1   2  0 |  2  1
.  . x    . |   2 |   * 100 |  0   2  1 |  1  2
------------+-----+---------+-----------+------
x10o .    . |  10 |  10   0 | 10   *  * |  2  0
x  . x    . |   4 |   2   2 |  * 100  * |  1  1
.  . x10/3o |  10 |   0  10 |  *   * 10 |  0  2
------------+-----+---------+-----------+------
x10o x    . ♦  20 |  20  10 |  2  10  0 | 10  *
x  . x10/3o ♦  20 |  10  20 |  0  10  2 |  * 10
```

```x10o x10/7o

.  . .    . | 100 |   2   2 |  1   4  1 |  2  2
------------+-----+---------+-----------+------
x  . .    . |   2 | 100   * |  1   2  0 |  2  1
.  . x    . |   2 |   * 100 |  0   2  1 |  1  2
------------+-----+---------+-----------+------
x10o .    . |  10 |  10   0 | 10   *  * |  2  0
x  . x    . |   4 |   2   2 |  * 100  * |  1  1
.  . x10/7o |  10 |   0  10 |  *   * 10 |  0  2
------------+-----+---------+-----------+------
x10o x    . ♦  20 |  20  10 |  2  10  0 | 10  *
x  . x10/7o ♦  20 |  10  20 |  0  10  2 |  * 10
```

```x10/3o x10/9o

.    . .    . | 100 |   2   2 |  1   4  1 |  2  2
--------------+-----+---------+-----------+------
x    . .    . |   2 | 100   * |  1   2  0 |  2  1
.    . x    . |   2 |   * 100 |  0   2  1 |  1  2
--------------+-----+---------+-----------+------
x10/3o .    . |  10 |  10   0 | 10   *  * |  2  0
x    . x    . |   4 |   2   2 |  * 100  * |  1  1
.    . x10/9o |  10 |   0  10 |  *   * 10 |  0  2
--------------+-----+---------+-----------+------
x10/3o x    . ♦  20 |  20  10 |  2  10  0 | 10  *
x    . x10/9o ♦  20 |  10  20 |  0  10  2 |  * 10
```

```x10/7o x10/9o

.    . .    . | 100 |   2   2 |  1   4  1 |  2  2
--------------+-----+---------+-----------+------
x    . .    . |   2 | 100   * |  1   2  0 |  2  1
.    . x    . |   2 |   * 100 |  0   2  1 |  1  2
--------------+-----+---------+-----------+------
x10/7o .    . |  10 |  10   0 | 10   *  * |  2  0
x    . x    . |   4 |   2   2 |  * 100  * |  1  1
.    . x10/9o |  10 |   0  10 |  *   * 10 |  0  2
--------------+-----+---------+-----------+------
x10/7o x    . ♦  20 |  20  10 |  2  10  0 | 10  *
x    . x10/9o ♦  20 |  10  20 |  0  10  2 |  * 10
```

```x5x x10/3o

. . .    . | 100 |  1  1   2 |  1  2  2  1 |  2 1 1
-----------+-----+-----------+-------------+-------
x . .    . |   2 | 50  *   * |  1  2  0  0 |  2 1 0
. x .    . |   2 |  * 50   * |  1  0  2  0 |  2 0 1
. . x    . |   2 |  *  * 100 |  0  1  1  1 |  1 1 1
-----------+-----+-----------+-------------+-------
x5x .    . |  10 |  5  5   0 | 10  *  *  * |  2 0 0
x . x    . |   4 |  2  0   2 |  * 50  *  * |  1 1 0
. x x    . |   4 |  0  2   2 |  *  * 50  * |  1 0 1
. . x10/3o |  10 |  0  0  10 |  *  *  * 10 |  0 1 1
-----------+-----+-----------+-------------+-------
x5x x    . ♦  20 | 10 10  10 |  2  5  5  0 | 10 * *
x . x10/3o ♦  20 | 10  0  20 |  0 10  0  2 |  * 5 *
. x x10/3o ♦  20 |  0 10  20 |  0  0 10  2 |  * * 5
```

```x5x x10/7o

. . .    . | 100 |  1  1   2 |  1  2  2  1 |  2 1 1
-----------+-----+-----------+-------------+-------
x . .    . |   2 | 50  *   * |  1  2  0  0 |  2 1 0
. x .    . |   2 |  * 50   * |  1  0  2  0 |  2 0 1
. . x    . |   2 |  *  * 100 |  0  1  1  1 |  1 1 1
-----------+-----+-----------+-------------+-------
x5x .    . |  10 |  5  5   0 | 10  *  *  * |  2 0 0
x . x    . |   4 |  2  0   2 |  * 50  *  * |  1 1 0
. x x    . |   4 |  0  2   2 |  *  * 50  * |  1 0 1
. . x10/7o |  10 |  0  0  10 |  *  *  * 10 |  0 1 1
-----------+-----+-----------+-------------+-------
x5x x    . ♦  20 | 10 10  10 |  2  5  5  0 | 10 * *
x . x10/7o ♦  20 | 10  0  20 |  0 10  0  2 |  * 5 *
. x x10/7o ♦  20 |  0 10  20 |  0  0 10  2 |  * * 5
```

```x5/3x x10o

.   . .  . | 100 |  1  1   2 |  1  2  2  1 |  2 1 1
-----------+-----+-----------+-------------+-------
x   . .  . |   2 | 50  *   * |  1  2  0  0 |  2 1 0
.   x .  . |   2 |  * 50   * |  1  0  2  0 |  2 0 1
.   . x  . |   2 |  *  * 100 |  0  1  1  1 |  1 1 1
-----------+-----+-----------+-------------+-------
x5/3x .  . |  10 |  5  5   0 | 10  *  *  * |  2 0 0
x   . x  . |   4 |  2  0   2 |  * 50  *  * |  1 1 0
.   x x  . |   4 |  0  2   2 |  *  * 50  * |  1 0 1
.   . x10o |  10 |  0  0  10 |  *  *  * 10 |  0 1 1
-----------+-----+-----------+-------------+-------
x5/3x x  . ♦  20 | 10 10  10 |  2  5  5  0 | 10 * *
x   . x10o ♦  20 | 10  0  20 |  0 10  0  2 |  * 5 *
.   x x10o ♦  20 |  0 10  20 |  0  0 10  2 |  * * 5
```

```x5/3x x10/9o

.   . .    . | 100 |  1  1   2 |  1  2  2  1 |  2 1 1
-------------+-----+-----------+-------------+-------
x   . .    . |   2 | 50  *   * |  1  2  0  0 |  2 1 0
.   x .    . |   2 |  * 50   * |  1  0  2  0 |  2 0 1
.   . x    . |   2 |  *  * 100 |  0  1  1  1 |  1 1 1
-------------+-----+-----------+-------------+-------
x5/3x .    . |  10 |  5  5   0 | 10  *  *  * |  2 0 0
x   . x    . |   4 |  2  0   2 |  * 50  *  * |  1 1 0
.   x x    . |   4 |  0  2   2 |  *  * 50  * |  1 0 1
.   . x10/9o |  10 |  0  0  10 |  *  *  * 10 |  0 1 1
-------------+-----+-----------+-------------+-------
x5/3x x    . ♦  20 | 10 10  10 |  2  5  5  0 | 10 * *
x   . x10/9o ♦  20 | 10  0  20 |  0 10  0  2 |  * 5 *
.   x x10/9o ♦  20 |  0 10  20 |  0  0 10  2 |  * * 5
```

```x5x x5/3x

. . .   . | 100 |  1  1  1  1 |  1  1  1  1  1  1 | 1 1 1 1
----------+-----+-------------+-------------------+--------
x . .   . |   2 | 50  *  *  * |  1  1  1  0  0  0 | 1 1 1 0
. x .   . |   2 |  * 50  *  * |  1  0  0  1  1  0 | 1 1 0 1
. . x   . |   2 |  *  * 50  * |  0  1  0  1  0  1 | 1 0 1 1
. . .   x |   2 |  *  *  * 50 |  0  0  1  0  1  1 | 0 1 1 1
----------+-----+-------------+-------------------+--------
x5x .   . |  10 |  5  5  0  0 | 10  *  *  *  *  * | 1 1 0 0
x . x   . |   4 |  2  0  2  0 |  * 25  *  *  *  * | 1 0 1 0
x . .   x |   4 |  2  0  0  2 |  *  * 25  *  *  * | 0 1 1 0
. x x   . |   4 |  0  2  2  0 |  *  *  * 25  *  * | 1 0 0 1
. x .   x |   4 |  0  2  0  2 |  *  *  *  * 25  * | 0 1 0 1
. . x5/3x |  10 |  0  0  5  5 |  *  *  *  *  * 10 | 0 0 1 1
----------+-----+-------------+-------------------+--------
x5x x   . ♦  20 | 10 10 10  0 |  2  5  0  5  0  0 | 5 * * *
x5x .   x ♦  20 | 10 10  0 10 |  2  0  5  0  5  0 | * 5 * *
x . x5/3x ♦  20 | 10  0 10 10 |  0  5  5  0  0  2 | * * 5 *
. x x5/3x ♦  20 |  0 10 10 10 |  0  0  0  5  5  2 | * * * 5

snubbed forms: s5s2s5/3s
```