Acronym gaqrin
Name great quasirhombated penteract
Field of sections
 ©
Circumradius sqrt[31-14 sqrt(2)]/2 = 1.673396
Vertex figure
 ©
Coordinates (2 sqrt(2)-1, 2 sqrt(2)-1, 2 sqrt(2)-1, sqrt(2)-1, 1)/2   & all permutations, all changes of sign
Face vector 640, 1600, 1520, 680, 122
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polyteron gaqrin is isomorph to girn, thereby replacing octagrams by octagons, resp. quitco by girco, resp. gaqrit by grit.


Incidence matrix according to Dynkin symbol

o3o3x3x4/3x

. . . .   . | 640 |   3   1   1 |   3   3   3  1 |   1   3   3  3 |  1  1  3
------------+-----+-------------+----------------+----------------+---------
. . x .   . |   2 | 960   *   * |   2   1   1  0 |   1   2   2  1 |  1  1  2
. . . x   . |   2 |   * 320   * |   0   3   0  1 |   0   3   0  3 |  1  0  3
. . . .   x |   2 |   *   * 320 |   0   0   3  1 |   0   0   3  3 |  0  1  3
------------+-----+-------------+----------------+----------------+---------
. o3x .   . |   3 |   3   0   0 | 640   *   *  * |   1   1   1  0 |  1  1  1
. . x3x   . |   6 |   3   3   0 |   * 320   *  * |   0   2   0  1 |  1  0  2
. . x .   x |   4 |   2   0   2 |   *   * 480  * |   0   0   2  1 |  0  1  2
. . . x4/3x |   8 |   0   4   4 |   *   *   * 80 |   0   0   0  3 |  0  0  3
------------+-----+-------------+----------------+----------------+---------
o3o3x .   .    4 |   6   0   0 |   4   0   0  0 | 160   *   *  * |  1  1  0
. o3x3x   .   12 |  12   6   0 |   4   4   0  0 |   * 160   *  * |  1  0  1
. o3x .   x    6 |   6   0   3 |   2   0   3  0 |   *   * 320  * |  0  1  1
. . x3x4/3x   48 |  24  24  24 |   0   8  12  6 |   *   *   * 40 |  0  0  2
------------+-----+-------------+----------------+----------------+---------
o3o3x3x   .   20 |  30  10   0 |  20  10   0  0 |   5   5   0  0 | 32  *  *
o3o3x .   x    8 |   6   0   4 |   8   0   6  0 |   2   0   4  0 |  * 80  *
. o3x3x4/3x  192 | 192  96  96 |  64  64  96 24 |   0  16  32  8 |  *  * 10

o3o3/2x3x4/3x

. .   . .   . | 640 |   3   1   1 |   3   3   3  1 |   1   3   3  3 |  1  1  3
--------------+-----+-------------+----------------+----------------+---------
. .   x .   . |   2 | 960   *   * |   2   1   1  0 |   1   2   2  1 |  1  1  2
. .   . x   . |   2 |   * 320   * |   0   3   0  1 |   0   3   0  3 |  1  0  3
. .   . .   x |   2 |   *   * 320 |   0   0   3  1 |   0   0   3  3 |  0  1  3
--------------+-----+-------------+----------------+----------------+---------
. o3/2x .   . |   3 |   3   0   0 | 640   *   *  * |   1   1   1  0 |  1  1  1
. .   x3x   . |   6 |   3   3   0 |   * 320   *  * |   0   2   0  1 |  1  0  2
. .   x .   x |   4 |   2   0   2 |   *   * 480  * |   0   0   2  1 |  0  1  2
. .   . x4/3x |   8 |   0   4   4 |   *   *   * 80 |   0   0   0  3 |  0  0  3
--------------+-----+-------------+----------------+----------------+---------
o3o3/2x .   .    4 |   6   0   0 |   4   0   0  0 | 160   *   *  * |  1  1  0
. o3/2x3x   .   12 |  12   6   0 |   4   4   0  0 |   * 160   *  * |  1  0  1
. o3/2x .   x    6 |   6   0   3 |   2   0   3  0 |   *   * 320  * |  0  1  1
. .   x3x4/3x   48 |  24  24  24 |   0   8  12  6 |   *   *   * 40 |  0  0  2
--------------+-----+-------------+----------------+----------------+---------
o3o3/2x3x   .   20 |  30  10   0 |  20  10   0  0 |   5   5   0  0 | 32  *  *
o3o3/2x .   x    8 |   6   0   4 |   8   0   6  0 |   2   0   4  0 |  * 80  *
. o3/2x3x4/3x  192 | 192  96  96 |  64  64  96 24 |   0  16  32  8 |  *  * 10

o3/2o3x3x4/3x

.   . . .   . | 640 |   3   1   1 |   3   3   3  1 |   1   3   3  3 |  1  1  3
--------------+-----+-------------+----------------+----------------+---------
.   . x .   . |   2 | 960   *   * |   2   1   1  0 |   1   2   2  1 |  1  1  2
.   . . x   . |   2 |   * 320   * |   0   3   0  1 |   0   3   0  3 |  1  0  3
.   . . .   x |   2 |   *   * 320 |   0   0   3  1 |   0   0   3  3 |  0  1  3
--------------+-----+-------------+----------------+----------------+---------
.   o3x .   . |   3 |   3   0   0 | 640   *   *  * |   1   1   1  0 |  1  1  1
.   . x3x   . |   6 |   3   3   0 |   * 320   *  * |   0   2   0  1 |  1  0  2
.   . x .   x |   4 |   2   0   2 |   *   * 480  * |   0   0   2  1 |  0  1  2
.   . . x4/3x |   8 |   0   4   4 |   *   *   * 80 |   0   0   0  3 |  0  0  3
--------------+-----+-------------+----------------+----------------+---------
o3/2o3x .   .    4 |   6   0   0 |   4   0   0  0 | 160   *   *  * |  1  1  0
.   o3x3x   .   12 |  12   6   0 |   4   4   0  0 |   * 160   *  * |  1  0  1
.   o3x .   x    6 |   6   0   3 |   2   0   3  0 |   *   * 320  * |  0  1  1
.   . x3x4/3x   48 |  24  24  24 |   0   8  12  6 |   *   *   * 40 |  0  0  2
--------------+-----+-------------+----------------+----------------+---------
o3/2o3x3x   .   20 |  30  10   0 |  20  10   0  0 |   5   5   0  0 | 32  *  *
o3/2o3x .   x    8 |   6   0   4 |   8   0   6  0 |   2   0   4  0 |  * 80  *
.   o3x3x4/3x  192 | 192  96  96 |  64  64  96 24 |   0  16  32  8 |  *  * 10

o3/2o3/2x3x4/3x

.   .   . .   . | 640 |   3   1   1 |   3   3   3  1 |   1   3   3  3 |  1  1  3
----------------+-----+-------------+----------------+----------------+---------
.   .   x .   . |   2 | 960   *   * |   2   1   1  0 |   1   2   2  1 |  1  1  2
.   .   . x   . |   2 |   * 320   * |   0   3   0  1 |   0   3   0  3 |  1  0  3
.   .   . .   x |   2 |   *   * 320 |   0   0   3  1 |   0   0   3  3 |  0  1  3
----------------+-----+-------------+----------------+----------------+---------
.   o3/2x .   . |   3 |   3   0   0 | 640   *   *  * |   1   1   1  0 |  1  1  1
.   .   x3x   . |   6 |   3   3   0 |   * 320   *  * |   0   2   0  1 |  1  0  2
.   .   x .   x |   4 |   2   0   2 |   *   * 480  * |   0   0   2  1 |  0  1  2
.   .   . x4/3x |   8 |   0   4   4 |   *   *   * 80 |   0   0   0  3 |  0  0  3
----------------+-----+-------------+----------------+----------------+---------
o3/2o3/2x .   .    4 |   6   0   0 |   4   0   0  0 | 160   *   *  * |  1  1  0
.   o3/2x3x   .   12 |  12   6   0 |   4   4   0  0 |   * 160   *  * |  1  0  1
.   o3/2x .   x    6 |   6   0   3 |   2   0   3  0 |   *   * 320  * |  0  1  1
.   .   x3x4/3x   48 |  24  24  24 |   0   8  12  6 |   *   *   * 40 |  0  0  2
----------------+-----+-------------+----------------+----------------+---------
o3/2o3/2x3x   .   20 |  30  10   0 |  20  10   0  0 |   5   5   0  0 | 32  *  *
o3/2o3/2x .   x    8 |   6   0   4 |   8   0   6  0 |   2   0   4  0 |  * 80  *
.   o3/2x3x4/3x  192 | 192  96  96 |  64  64  96 24 |   0  16  32  8 |  *  * 10

© 2004-2025
top of page