Acronym | gibcotdin | |||||||||||||||||||||||||||
Name | great biprismatocellitriacontadiadispenteract | |||||||||||||||||||||||||||
Field of sections |
| |||||||||||||||||||||||||||
Circumradius | sqrt[33-12 sqrt(2)]/2 = 2.001839 | |||||||||||||||||||||||||||
Vertex figure |
| |||||||||||||||||||||||||||
Coordinates | ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| |||||||||||||||||||||||||||
Face vector | 1920, 5760, 5440, 1840, 172 | |||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||
External links |
![]() ![]() |
As abstract polytope gibcotdin is isomorphic to sibcotdin, thereby replacing octagrams by octagons, resp. stop by op, quitco by girco, and gocco by socco, resp. gaquidpoth by gidpith, goccope by soccope, and gichado by sichado.
Incidence matrix according to Dynkin symbol
3 3 3 o---x---x---x 4 \ / 4/3 x
x3x3x3o4x4/3*c . . . . . | 1920 | 1 1 2 2 | 1 2 2 2 2 1 2 1 | 2 2 1 2 1 1 2 1 1 | 1 2 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * * | 1 2 2 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 2 1 0 | 1 2 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 1 0 1 1 | 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * | 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 960 * * * | 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3o . | 3 | 0 0 3 0 | * * * * * 640 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 0 4 4 | * * * * * * 480 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o4x | 4 | 0 0 0 4 | * * * * * * * 480 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 0 | * 320 * * * * * * * | 0 1 1 0 0 x . x3o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 0 | * * 320 * * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 0 | * * * 240 * * * * * | 0 1 0 1 0 x . . o4x ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 | * * * * 240 * * * * | 0 0 1 1 0 . x3x3o . ♦ 12 | 0 6 12 0 | 0 0 0 4 0 4 0 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3x . x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 8 12 0 6 0 | * * * * * * 80 * * | 0 1 0 0 1 . x . o4x ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 0 2 | * * * * * * * 240 * | 0 0 1 0 1 . . x3o4x4/3*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x3o . ♦ 60 | 30 30 60 0 | 10 30 0 20 0 20 0 0 | 5 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x4/3*c ♦ 384 | 192 192 192 192 | 64 96 96 64 96 0 48 0 | 16 32 0 24 0 0 8 0 0 | * 10 * * * x3x . o4x ♦ 24 | 12 12 0 24 | 4 0 12 0 12 0 0 6 | 0 4 0 0 3 0 0 3 0 | * * 80 * * x . x3o4x4/3*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 16 12 12 | 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3x3o4x4/3*c ♦ 192 | 0 96 192 192 | 0 0 0 64 96 64 48 48 | 0 0 0 0 0 16 8 24 8 | * * * * 10
3/2 3 3 o---x---x---x 4/3 \ / 4/3 x
x3x3x3/2o4/3x4/3*c . . . . . | 1920 | 1 1 2 2 | 1 2 2 2 2 1 2 1 | 2 2 1 2 1 1 2 1 1 | 1 2 1 1 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x . . . . | 2 | 960 * * * | 1 2 2 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 960 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 2 1 0 | 1 2 1 0 1 . . x . . | 2 | * * 1920 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 1 0 1 1 | 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 960 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * | 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 640 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 960 * * * | 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3/2o . | 3 | 0 0 3 0 | * * * * * 640 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 0 4 4 | * * * * * * 480 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o4/3x | 4 | 0 0 0 4 | * * * * * * * 480 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 0 | 160 * * * * * * * * | 1 1 0 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 0 | * 320 * * * * * * * | 0 1 1 0 0 x . x3/2o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 0 | * * 320 * * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 2 0 | * * * 240 * * * * * | 0 1 0 1 0 x . . o4/3x ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 | * * * * 240 * * * * | 0 0 1 1 0 . x3x3/2o . ♦ 12 | 0 6 12 0 | 0 0 0 4 0 4 0 0 | * * * * * 160 * * * | 1 0 0 0 1 . x3x . x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 8 12 0 6 0 | * * * * * * 80 * * | 0 1 0 0 1 . x . o4/3x ♦ 8 | 0 4 0 8 | 0 0 0 0 4 0 0 2 | * * * * * * * 240 * | 0 0 1 0 1 . . x3/2o4/3x4/3*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 8 6 6 | * * * * * * * * 80 | 0 0 0 1 1 -------------------+------+-------------------+---------------------------------+-----------------------------------+--------------- x3x3x3/2o . ♦ 60 | 30 30 60 0 | 10 30 0 20 0 20 0 0 | 5 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x4/3*c ♦ 384 | 192 192 192 192 | 64 96 96 64 96 0 48 0 | 16 32 0 24 0 0 8 0 0 | * 10 * * * x3x . o4/3x ♦ 24 | 12 12 0 24 | 4 0 12 0 12 0 0 6 | 0 4 0 0 3 0 0 3 0 | * * 80 * * x . x3/2o4/3x4/3*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 16 12 12 | 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3x3/2o4/3x4/3*c ♦ 192 | 0 96 192 192 | 0 0 0 64 96 64 48 48 | 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |