Acronym gibcotdin
Name great biprismatocellitriacontadiadispenteract
Field of sections
 ©
Circumradius sqrt[33-12 sqrt(2)]/2 = 2.001839
Vertex figure
 ©
Coordinates ((3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: gaquidpoth gichado goccope grip paqrit quercope shiddip tope
gibcotdin 1010403200800
quicgrat 0003210408080
& others)
Face vector 1920, 5760, 5440, 1840, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki  

As abstract polytope gibcotdin is isomorphic to sibcotdin, thereby replacing octagrams by octagons, resp. stop by op, quitco by girco, and gocco by socco, resp. gaquidpoth by gidpith, goccope by soccope, and gichado by sichado.


Incidence matrix according to Dynkin symbol

     3   3   3   
   o---x---x---x 
  4 \ / 4/3      
     x           
x3x3x3o4x4/3*c

. . . . .      | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1  2   1  1 |  1  2  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . . . .      |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0  0   0  0 |  1  2  1  1  0
. x . . .      |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1  2   1  0 |  1  2  1  0  1
. . x . .      |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1  1   0  1 |  1  1  0  1  1
. . . . x      |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x . . .      |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0  0   0  0 |  1  2  1  0  0
x . x . .      |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0  0   0  0 |  1  1  0  1  0
x . . . x      |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3x . .      |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x . . x      |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . x3o .      |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . x . x4/3*c |    8 |   0   0    4    4 |   *   *   *   *   *   * 480   * |   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . . o4x      |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x . .         24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x . . x         12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . x3o .          6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . x . x4/3*c    16 |   8   0    8    8 |   0   4   4   0   0   0   2   0 |   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . o4x          8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3x3o .         12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3x . x4/3*c    48 |   0  24   24   24 |   0   0   0   8  12   0   6   0 |   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x . o4x          8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . x3o4x4/3*c    24 |   0   0   24   24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
---------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x3o .         60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3x . x4/3*c   384 | 192 192  192  192 |  64  96  96  64  96   0  48   0 |  16  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x . o4x         24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . x3o4x4/3*c    48 |  24   0   48   48 |   0  24  24   0   0  16  12  12 |   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3x3o4x4/3*c   192 |   0  96  192  192 |   0   0   0  64  96  64  48  48 |   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10

    3/2   3   3   
   o---x---x---x 
4/3 \ / 4/3      
     x           
x3x3x3/2o4/3x4/3*c

. . .   .   .      | 1920 |   1   1    2    2 |   1   2   2   2   2   1   2   1 |   2   2   1   2   1   1  2   1  1 |  1  2  1  1  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x . .   .   .      |    2 | 960   *    *    * |   1   2   2   0   0   0   0   0 |   2   2   1   2   1   0  0   0  0 |  1  2  1  1  0
. x .   .   .      |    2 |   * 960    *    * |   1   0   0   2   2   0   0   0 |   2   2   0   0   0   1  2   1  0 |  1  2  1  0  1
. . x   .   .      |    2 |   *   * 1920    * |   0   1   0   1   0   1   1   0 |   1   0   1   1   0   1  1   0  1 |  1  1  0  1  1
. . .   .   x      |    2 |   *   *    * 1920 |   0   0   1   0   1   0   1   1 |   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x .   .   .      |    6 |   3   3    0    0 | 320   *   *   *   *   *   *   * |   2   2   0   0   0   0  0   0  0 |  1  2  1  0  0
x . x   .   .      |    4 |   2   0    2    0 |   * 960   *   *   *   *   *   * |   1   0   1   1   0   0  0   0  0 |  1  1  0  1  0
x . .   .   x      |    4 |   2   0    0    2 |   *   * 960   *   *   *   *   * |   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3x   .   .      |    6 |   0   3    3    0 |   *   *   * 640   *   *   *   * |   1   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x .   .   x      |    4 |   0   2    0    2 |   *   *   *   * 960   *   *   * |   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . x3/2o   .      |    3 |   0   0    3    0 |   *   *   *   *   * 640   *   * |   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . x   .   x4/3*c |    8 |   0   0    4    4 |   *   *   *   *   *   * 480   * |   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . .   o4/3x      |    4 |   0   0    0    4 |   *   *   *   *   *   *   * 480 |   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x   .   .         24 |  12  12   12    0 |   4   6   0   4   0   0   0   0 | 160   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x .   .   x         12 |   6   6    0    6 |   2   0   3   0   3   0   0   0 |   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . x3/2o   .          6 |   3   0    6    0 |   0   3   0   0   0   2   0   0 |   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . x   .   x4/3*c    16 |   8   0    8    8 |   0   4   4   0   0   0   2   0 |   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . .   o4/3x          8 |   4   0    0    8 |   0   0   4   0   0   0   0   2 |   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3x3/2o   .         12 |   0   6   12    0 |   0   0   0   4   0   4   0   0 |   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3x   .   x4/3*c    48 |   0  24   24   24 |   0   0   0   8  12   0   6   0 |   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x .   o4/3x          8 |   0   4    0    8 |   0   0   0   0   4   0   0   2 |   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . x3/2o4/3x4/3*c    24 |   0   0   24   24 |   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
-------------------+------+-------------------+---------------------------------+-----------------------------------+---------------
x3x3x3/2o   .         60 |  30  30   60    0 |  10  30   0  20   0  20   0   0 |   5   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3x   .   x4/3*c   384 | 192 192  192  192 |  64  96  96  64  96   0  48   0 |  16  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x .   o4/3x         24 |  12  12    0   24 |   4   0  12   0  12   0   0   6 |   0   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . x3/2o4/3x4/3*c    48 |  24   0   48   48 |   0  24  24   0   0  16  12  12 |   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3x3/2o4/3x4/3*c   192 |   0  96  192  192 |   0   0   0  64  96  64  48  48 |   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10

© 2004-2025
top of page