Acronym | gikkiv datixathi |
Name | great skewverted ditrigonary hexacosatrishecatonicosachoron |
Cross sections |
|
Circumradius | sqrt[13-4 sqrt(5)] = 2.013884 |
Colonel of regiment | gik vixathi |
Face vector | 7200, 21600, 11520, 960 |
Confer |
|
External links |
![]() ![]() |
As abstract polytope gikkiv datixathi is isomorph to skiv datixathi, thereby interchanging the roles of decagons and decagrams as well as replacing pentagrams by pentagons, resp. replacing gaddid by saddid and sidditdid by gidditdid.
Incidence matrix according to Dynkin symbol
x /|\ / 3 \ 3 / | \ 5 / _x_ \ /_3/2 5/3_\ o-----------x 5/3
x3x3o5/3x5/3*a3/2*c *b5*d . . . . | 7200 | 2 2 2 | 2 1 2 1 2 1 | 1 2 1 1 --------------------------+------+----------------+-------------------------------+---------------- x . . . | 2 | 7200 * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 7200 * | 1 0 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 7200 | 0 0 1 0 1 1 | 0 1 1 1 --------------------------+------+----------------+-------------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * * | 1 1 0 0 x . o . *a3/2*c | 3 | 3 0 0 | * 2400 * * * * | 1 0 1 0 x . . x5/3*a | 10 | 5 0 5 | * * 1440 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * * 2400 * * | 1 0 0 1 . x . x *b5*d | 10 | 0 5 5 | * * * * 1440 * | 0 1 0 1 . . o5/3x | 5 | 0 0 5 | * * * * * 1440 | 0 0 1 1 --------------------------+------+----------------+-------------------------------+---------------- x3x3o . *a3/2*c ♦ 12 | 12 12 0 | 4 4 0 4 0 0 | 600 * * * x3x . x5/3*a *b5*d ♦ 120 | 60 60 60 | 20 0 12 0 12 0 | * 120 * * x . o5/3x5/3*a3/2*c ♦ 60 | 60 0 60 | 0 20 12 0 0 12 | * * 120 * . x3o5/3x *b5*d ♦ 60 | 0 60 60 | 0 0 0 20 12 12 | * * * 120
x /|\ / 3 \ 3/2 / | \ 5 / _x_ \ /_3- 5/3_\ o-----------x 5/2
x3x3/2o5/2x5/3*a3*c *b5*d . . . . | 7200 | 2 2 2 | 2 1 2 1 2 1 | 1 2 1 1 --------------------------+------+----------------+-------------------------------+---------------- x . . . | 2 | 7200 * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 7200 * | 1 0 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 7200 | 0 0 1 0 1 1 | 0 1 1 1 --------------------------+------+----------------+-------------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * * | 1 1 0 0 x . o . *a3*c | 3 | 3 0 0 | * 2400 * * * * | 1 0 1 0 x . . x5/3*a | 10 | 5 0 5 | * * 1440 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * * 2400 * * | 1 0 0 1 . x . x *b5*d | 10 | 0 5 5 | * * * * 1440 * | 0 1 0 1 . . o5/2x | 5 | 0 0 5 | * * * * * 1440 | 0 0 1 1 --------------------------+------+----------------+-------------------------------+---------------- x3x3/2o . *a3*c ♦ 12 | 12 12 0 | 4 4 0 4 0 0 | 600 * * * x3x . x5/3*a *b5*d ♦ 120 | 60 60 60 | 20 0 12 0 12 0 | * 120 * * x . o5/2x5/3*a3*c ♦ 60 | 60 0 60 | 0 20 12 0 0 12 | * * 120 * . x3/2o5/2x *b5*d ♦ 60 | 0 60 60 | 0 0 0 20 12 12 | * * * 120
© 2004-2025 | top of page |