Acronym oho TOCID symbol O|C, aTT Name octahemioctahedron,allelotetratetrahedron ` © ©` Circumradius 1 Vertex figure [3/2,6,3,6]/0 Snub derivation Coordinates (1/sqrt(2), 1/sqrt(2), 0)   & all permutations, all changes of sign General of army co Colonel of regiment co Dihedral angles between {3} and {6}:   arccos(1/3) = 70.528779° Confer Grünbaumian relatives: oho+8{3}   compounds: iddei Externallinks

The octahemioctahedron is an edge-faceting of co, in fact it uses the triangles of it and all equatorial hexagons.

When introducing a further vertex at the center and making face intersections into true edges, oho would become an edge connected shape from 8 tetrahedra.

Incidence matrix according to Dynkin symbol

```x3/2o3x3*a

.   . .    | 12 |  2  2 | 1 2 1
-----------+----+-------+------
x   . .    |  2 | 12  * | 1 1 0
.   . x    |  2 |  * 12 | 1 0 1
-----------+----+-------+------
x3/2o .    |  3 |  3  0 | 4 * *
x   . x3*a |  6 |  3  3 | * 4 *
.   o3x    |  3 |  0  3 | * * 4

snubbed forms: β3/2o3x3*a, x3/2o3β3*a, β3/2o3β3*a
```

```(isotoxal)

12 |  4 | 2 2
---+----+----
2 | 24 | 1 1
---+----+----
3 |  3 | 8 *
6 |  6 | * 4
```

```β3o3x

both( . . . ) | 12 |  2  2 | 1 1 2
--------------+----+-------+------
both( . . x ) |  2 | 12  * | 0 1 1
sefa( β3o . ) |  2 |  * 12 | 1 0 1
--------------+----+-------+------
β3o .   ♦  3 |  0  3 | 4 * *
both( . o3x ) |  3 |  3  0 | * 4 *
sefa( β3o3x ) |  6 |  3  3 | * * 4

starting figure: x3o3x
```

```β3/2x3x

demi( .   . . ) | 12 |  2  2 | 2 1 1
----------------+----+-------+------
both( .   x . ) |  2 | 12  * | 1 1 0
both( .   . x ) |  2 |  * 12 | 1 0 1
----------------+----+-------+------
both( .   x3x ) |  6 |  3  3 | 4 * *
β3/2x .   ♦  3 |  3  0 | * 4 *
sefa( β3/2x3x ) |  3 |  0  3 | * * 4

starting figure: x3/2x3x
```