| Acronym | giphin | 
| Name | great prismated hemipenteract, steriruncicantic penteract | 
| Field of sections | 
 | 
| Circumradius | sqrt(85/8) = 3.259601 | 
| Vertex figure | 
 | 
| Face vector | 960, 2400, 2080, 720, 82 | 
| Confer | 
 | 
| External links |       | 
Incidence matrix according to Dynkin symbol
   x           
  3 \          
     x---x---x 
  3 /  3   3   
   o           
x3x3o *b3x3x . . . . . | 960 | 1 2 1 1 | 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x . . . . | 2 | 480 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . x . . . | 2 | * 960 * * | 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . x . | 2 | * * 480 * | 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x | 2 | * * * 480 | 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . x . | 4 | 2 0 2 0 | * 240 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x | 4 | 2 0 0 2 | * * 240 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . x3o . . | 3 | 0 3 0 0 | * * * 320 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . x3x | 6 | 0 0 3 3 | * * * * * * 160 | 0 0 0 1 0 0 2 | 0 0 2 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 | 80 * * * * * * | 1 1 0 0 x3x . *b3x . ♦ 24 | 12 12 12 0 | 4 6 0 0 4 0 0 | * 80 * * * * * | 1 0 1 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 | * * 160 * * * * | 0 1 1 0 x . . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 0 2 | * * * 80 * * * | 0 0 2 0 . x3o *b3x . ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 | * * * * 80 * * | 1 0 0 1 . x3o . x ♦ 6 | 0 6 0 3 | 0 0 0 2 0 3 0 | * * * * * 160 * | 0 1 0 1 . x . *b3x3x ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 4 | * * * * * * 80 | 0 0 1 1 -------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3o *b3x . ♦ 96 | 48 96 48 0 | 32 24 0 32 32 0 0 | 8 8 0 0 8 0 0 | 10 * * * x3x3o . x ♦ 24 | 12 24 0 12 | 8 0 6 8 0 12 0 | 2 0 4 0 0 4 0 | * 40 * * x3x . *b3x3x ♦ 120 | 60 60 60 60 | 20 30 30 0 20 30 20 | 0 5 10 10 0 0 5 | * * 16 * . x3o *b3x3x ♦ 60 | 0 60 30 30 | 0 0 0 20 20 30 10 | 0 0 0 0 5 10 5 | * * * 16
   x           
  3 \          
     x---x---x 
3/2 /  3   3   
   o           
x3x3/2o *b3x3x . . . . . | 960 | 1 2 1 1 | 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x . . . . | 2 | 480 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . x . . . | 2 | * 960 * * | 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . x . | 2 | * * 480 * | 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x | 2 | * * * 480 | 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x . . . | 6 | 3 3 0 0 | 320 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . x . | 4 | 2 0 2 0 | * 240 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x | 4 | 2 0 0 2 | * * 240 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . x3/2o . . | 3 | 0 3 0 0 | * * * 320 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . x3x | 6 | 0 0 3 3 | * * * * * * 160 | 0 0 0 1 0 0 2 | 0 0 2 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3/2o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 | 80 * * * * * * | 1 1 0 0 x3x . *b3x . ♦ 24 | 12 12 12 0 | 4 6 0 0 4 0 0 | * 80 * * * * * | 1 0 1 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 | * * 160 * * * * | 0 1 1 0 x . . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 0 2 | * * * 80 * * * | 0 0 2 0 . x3/2o *b3x . ♦ 12 | 0 12 6 0 | 0 0 0 4 4 0 0 | * * * * 80 * * | 1 0 0 1 . x3/2o . x ♦ 6 | 0 6 0 3 | 0 0 0 2 0 3 0 | * * * * * 160 * | 0 1 0 1 . x . *b3x3x ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 4 | * * * * * * 80 | 0 0 1 1 ---------------+-----+-----------------+-----------------------------+------------------------+------------ x3x3/2o *b3x . ♦ 96 | 48 96 48 0 | 32 24 0 32 32 0 0 | 8 8 0 0 8 0 0 | 10 * * * x3x3/2o . x ♦ 24 | 12 24 0 12 | 8 0 6 8 0 12 0 | 2 0 4 0 0 4 0 | * 40 * * x3x . *b3x3x ♦ 120 | 60 60 60 60 | 20 30 30 0 20 30 20 | 0 5 10 10 0 0 5 | * * 16 * . x3/2o *b3x3x ♦ 60 | 0 60 30 30 | 0 0 0 20 20 30 10 | 0 0 0 0 5 10 5 | * * * 16
x3x3x3o4s
demi( . . . . . ) | 960 |   1   1   2   1 |   1   2   2   1   1   1   2 |  2   1  1  1  1   2  2 |  1  1  1  2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x . . . . ) |   2 | 480   *   *   * |   1   2   0   0   1   0   0 |  2   1  0  1  0   2  0 |  1  1  0  2
demi( . x . . . ) |   2 |   * 480   *   * |   1   0   2   0   0   1   0 |  2   0  1  1  0   0  2 |  1  0  1  2
demi( . . x . . ) |   2 |   *   * 960   * |   0   1   1   1   0   0   1 |  1   1  1  0  1   1  1 |  1  1  1  1
      . . . o4s   |   2 |   *   *   * 480 |   0   0   0   0   1   1   2 |  0   0  0  1  1   2  2 |  0  1  1  2
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x . . . ) |   6 |   3   3   0   0 | 160   *   *   *   *   *   * |  2   0  0  1  0   0  0 |  1  0  0  2
demi( x . x . . ) |   4 |   2   0   2   0 |   * 480   *   *   *   *   * |  1   1  0  0  0   1  0 |  1  1  0  1
demi( . x3x . . ) |   6 |   0   3   3   0 |   *   * 320   *   *   *   * |  1   0  1  0  0   0  1 |  1  0  1  1
demi( . . x3o . ) |   3 |   0   0   3   0 |   *   *   * 320   *   *   * |  0   1  1  0  1   0  0 |  1  1  1  0
      x . 2 o4s   |   4 |   2   0   0   2 |   *   *   *   * 240   *   * |  0   0  0  1  0   2  0 |  0  1  0  2
      . x 2 o4s   |   4 |   0   2   0   2 |   *   *   *   *   * 240   * |  0   0  0  1  0   0  2 |  0  0  1  2
sefa( . . x3o4s ) |   6 |   0   0   3   3 |   *   *   *   *   *   * 320 |  0   0  0  0  1   1  1 |  0  1  1  1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x . . ) ♦  24 |  12  12  12   0 |   4   6   4   0   0   0   0 | 80   *  *  *  *   *  * |  1  0  0  1
demi( x . x3o . ) ♦   6 |   3   0   6   0 |   0   3   0   2   0   0   0 |  * 160  *  *  *   *  * |  1  1  0  0
demi( . x3x3o . ) ♦  12 |   0   6  12   0 |   0   0   4   4   0   0   0 |  *   * 80  *  *   *  * |  1  0  1  0
      x3x 2 o4s   ♦  12 |   6   6   0   6 |   2   0   0   0   3   3   0 |  *   *  * 80  *   *  * |  0  0  0  2
      . . x3o4s   ♦  12 |   0   0  12   6 |   0   0   0   4   0   0   4 |  *   *  *  * 80   *  * |  0  1  1  0
sefa( x 2 x3o4s ) ♦  12 |   6   0   6   6 |   0   3   0   0   3   0   2 |  *   *  *  *  * 160  * |  0  1  0  1
sefa( . x3x3o4s ) ♦  24 |   0  12  12  12 |   0   0   4   0   0   6   4 |  *   *  *  *  *   * 80 |  0  0  1  1
------------------+-----+-----------------+-----------------------------+------------------------+------------
demi( x3x3x3o . ) ♦  60 |  30  30  60   0 |  10  30  20  20   0   0   0 |  5  10  5  0  0   0  0 | 16  *  *  *
      x 2 x3o4s   ♦  24 |  12   0  24  12 |   0  12   0   8   6   0   8 |  0   4  0  0  2   4  0 |  * 40  *  *
      . x3x3o4s   ♦  96 |   0  48  96  48 |   0   0  32  32   0  24  32 |  0   0  8  0  8   0  8 |  *  * 10  *
sefa( x3x3x3o4s ) ♦ 120 |  60  60  60  60 |  20  30  20   0  30  30  20 |  5   0  0 10  0  10  5 |  *  *  * 16
starting figure: x3x3x3o4x
| © 2004-2025 | top of page |