Acronym hatic (old: hittic)
Name hexagon truncated-cube duoprism
Circumradius sqrt[sqrt(2)+11/4] = 2.040640
Volume 7[3+2 sqrt(2)] sqrt(3)/2 = 35.332962
Face vector 144, 360, 324, 126, 20
Confer
more general:
n,tic-dip  
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

As abstract polyteron hatic is isomorph to haquith, thereby replacing octagons by octagrams, resp. op by stop and tic by quith, resp. hodip by histodip and ticcup by quithip.


Incidence matrix according to Dynkin symbol

x6o o3x4x

. . . . . | 144 |   2   2  1 |  1   4  2  1  2 |  2  1  2  4 1 | 1 2 2
----------+-----+------------+-----------------+---------------+------
x . . . . |   2 | 144   *  * |  1   2  1  0  0 |  2  1  1  2 0 | 1 2 1
. . . x . |   2 |   * 144  * |  0   2  0  1  1 |  1  0  2  2 1 | 1 1 2
. . . . x |   2 |   *   * 72 |  0   0  2  0  2 |  0  1  0  4 1 | 0 2 2
----------+-----+------------+-----------------+---------------+------
x6o . . . |   6 |   6   0  0 | 24   *  *  *  * |  2  1  0  0 0 | 1 2 0
x . . x . |   4 |   2   2  0 |  * 144  *  *  * |  1  0  1  1 0 | 1 1 1
x . . . x |   4 |   2   0  2 |  *   * 72  *  * |  0  1  0  2 0 | 0 2 1
. . o3x . |   3 |   0   3  0 |  *   *  * 48  * |  0  0  2  0 1 | 1 0 2
. . . x4x |   8 |   0   4  4 |  *   *  *  * 36 |  0  0  0  2 1 | 0 1 2
----------+-----+------------+-----------------+---------------+------
x6o . x .   12 |  12   6  0 |  2   6  0  0  0 | 24  *  *  * * | 1 1 0
x6o . . x   12 |  12   0  6 |  2   0  6  0  0 |  * 12  *  * * | 0 2 0
x . o3x .    6 |   3   6  0 |  0   3  0  2  0 |  *  * 48  * * | 1 0 1
x . . x4x   16 |   8   8  8 |  0   4  4  0  2 |  *  *  * 36 * | 0 1 1
. . o3x4x   24 |   0  24 12 |  0   0  0  8  6 |  *  *  *  * 6 | 0 0 2
----------+-----+------------+-----------------+---------------+------
x6o o3x .   18 |  18  18  0 |  3  18  0  6  0 |  3  0  6  0 0 | 8 * *
x6o . x4x   48 |  48  24 24 |  8  24 24  0  6 |  4  4  0  6 0 | * 6 *
x . o3x4x   48 |  24  48 24 |  0  24 12 16 12 |  0  0  8  6 2 | * * 6

x3x o3x4x

. . . . . | 144 |  1  1   2  1 |  1  2  1  2  1  1  2 |  2  1  1  2  1  2 1 | 1 2 1 1
----------+-----+--------------+----------------------+---------------------+--------
x . . . . |   2 | 72  *   *  * |  1  2  1  0  0  0  0 |  2  1  1  2  0  0 0 | 1 2 1 0
. x . . . |   2 |  * 72   *  * |  1  0  0  2  1  0  0 |  2  1  0  0  1  2 0 | 1 2 0 1
. . . x . |   2 |  *  * 144  * |  0  1  0  1  0  1  1 |  1  0  1  1  1  1 1 | 1 1 1 1
. . . . x |   2 |  *  *   * 72 |  0  0  1  0  1  0  2 |  0  1  0  2  0  2 1 | 0 2 1 1
----------+-----+--------------+----------------------+---------------------+--------
x3x . . . |   6 |  3  3   0  0 | 24  *  *  *  *  *  * |  2  1  0  0  0  0 0 | 1 2 0 0
x . . x . |   4 |  2  0   2  0 |  * 72  *  *  *  *  * |  1  0  1  1  0  0 0 | 1 1 1 0
x . . . x |   4 |  2  0   0  2 |  *  * 36  *  *  *  * |  0  1  0  2  0  0 0 | 0 2 1 0
. x . x . |   4 |  0  2   2  0 |  *  *  * 72  *  *  * |  1  0  0  0  1  1 0 | 1 1 0 1
. x . . x |   4 |  0  2   0  2 |  *  *  *  * 36  *  * |  0  1  0  0  0  2 0 | 0 2 0 1
. . o3x . |   3 |  0  0   3  0 |  *  *  *  *  * 48  * |  0  0  1  0  1  0 1 | 1 0 1 1
. . . x4x |   8 |  0  0   4  4 |  *  *  *  *  *  * 36 |  0  0  0  1  0  1 1 | 0 1 1 1
----------+-----+--------------+----------------------+---------------------+--------
x3x . x .   12 |  6  6   6  0 |  2  3  0  3  0  0  0 | 24  *  *  *  *  * * | 1 1 0 0
x3x . . x   12 |  6  6   0  6 |  2  0  3  0  3  0  0 |  * 12  *  *  *  * * | 0 2 0 0
x . o3x .    6 |  3  0   6  0 |  0  3  0  0  0  2  0 |  *  * 24  *  *  * * | 1 0 1 0
x . . x4x   16 |  8  0   8  8 |  0  4  4  0  0  0  2 |  *  *  * 18  *  * * | 0 1 1 0
. x o3x .    6 |  0  3   6  0 |  0  0  0  3  0  2  0 |  *  *  *  * 24  * * | 1 0 0 1
. x . x4x   16 |  0  8   8  8 |  0  0  0  4  4  0  2 |  *  *  *  *  * 18 * | 0 1 0 1
. . o3x4x   24 |  0  0  24 12 |  0  0  0  0  0  8  6 |  *  *  *  *  *  * 6 | 0 0 1 1
----------+-----+--------------+----------------------+---------------------+--------
x3x o3x .   18 |  9  9  18  0 |  3  9  0  9  0  6  0 |  3  0  3  0  3  0 0 | 8 * * *
x3x . x4x   48 | 24 24  24 24 |  8 12 12 12 12  0  6 |  4  4  0  3  0  3 0 | * 6 * *
x . o3x4x   48 | 24  0  48 24 |  0 24 12  0  0 16 12 |  0  0  8  6  0  0 2 | * * 3 *
. x o3x4x   48 |  0 24  48 24 |  0  0  0 24 12 16 12 |  0  0  0  0  8  6 2 | * * * 3

© 2004-2026
top of page