Acronym (n/d,m/b)-gybef
Name (n/d,m/b)-gyrobifastegium,
{n/d} atop (n/d,m/b)-duoprism atop perpendicular {m/b}
Circumradius ...
Face vector n+m+nm, n+m+4nm, 2+n+m+5nm, 3n+3m+2nm, 2n+2m
Especially 3-gybef (n/d=m/b=3)   4-gybef (n/d=m/b=4)  

Just as the 3D gyrobifastegium just was the bistratic lace tower, obtained as external blend of 2 square-adjoined trips (then in the sense of line || pseudo square || perp line), this 5D (n/d,m/b)-gyrobifastegium likewise is the bistratic adjoin of an ({n/d}, {m/b}-pyr)-duoprism with an ({n/d}-pyr, {m/b})-duoprism, thereby blending out the common ({n/d}, {m/b})-duoprismatic base.

The below given heights formulae directly show the additional restrictions on n/d, m/b, directly obtained from the according height restriction of the according polygrammic pyramids:

n/d, m/b  ∈  ]6/5,2[ ∪ ]2,6[


Incidence matrix according to Dynkin symbol

xxo-n/d-ooo oxx-m/b-ooo&#xt   → height(1,2) = sqrt(1-1/[4 sin2(π b/m)])
                                heigh(2,3) = sqrt(1-1/[4 sin2(π d/n)])
({n/d} || pseudo (n/d,m/b)-duoprism || perp {m/b})

o..-n/d-o.. o..-m/b-o..    | n  * * | 2  m  0  0  0 0 | 1 2m  m 0  0 0  0  0 0 | m 2m 1 0 0 0  0 0 | m 2 0 0
.o.-n/d-.o. .o.-m/b-.o.    | * nm * | 0  1  2  2  1 0 | 0  2  2 1  4 1  2  2 0 | 1  4 1 2 2 1  4 1 | 2 2 2 2
..o-n/d-..o ..o-m/b-..o    | *  * m | 0  0  0  0  n 2 | 0  0  0 0  0 0  n 2n 1 | 0  0 0 0 0 1 2n n | 0 0 2 n
---------------------------+--------+-----------------+------------------------+-------------------+--------
x..     ... ...     ...    | 2  0 0 | n  *  *  *  * * | 1  m  0 0  0 0  0  0 0 | m  m 0 0 0 0  0 0 | m 1 0 0
oo.-n/d-oo. oo.-m/b-oo.&#x | 1  1 0 | * nm  *  *  * * | 0  2  2 0  0 0  0  0 0 | 1  4 1 0 0 0  0 0 | 2 2 0 0
.x.     ... ...     ...    | 0  2 0 | *  * nm  *  * * | 0  1  0 1  2 0  1  0 0 | 1  2 0 2 1 1  2 0 | 2 1 2 1
...     ... .x.     ...    | 0  2 0 | *  *  * nm  * * | 0  0  1 0  2 1  0  1 0 | 0  2 1 1 2 0  2 1 | 1 2 1 2
.oo-n/d-.oo .oo-m/b-.oo&#x | 0  1 1 | *  *  *  * nm * | 0  0  0 0  0 0  2  2 0 | 0  0 0 0 0 1  4 1 | 0 0 2 2
...     ... ..x     ...    | 0  0 2 | *  *  *  *  * m | 0  0  0 0  0 0  0  n 1 | 0  0 0 0 0 0  n n | 0 0 1 n
---------------------------+--------+-----------------+------------------------+-------------------+--------
x..-n/d-o.. ...     ...    | n  0 0 | n  0  0  0  0 0 | 1  *  * *  * *  *  * * | m  0 0 0 0 0  0 0 | m 0 0 0
xx.     ... ...     ...&#x | 2  2 0 | 1  2  1  0  0 0 | * nm  * *  * *  *  * * | 2  1 0 0 0 0  0 0 | 2 1 0 0
...     ... ox.     ...&#x | 1  2 0 | 0  2  0  1  0 0 | *  * nm *  * *  *  * * | 0  2 1 0 0 0  0 0 | 1 2 0 0
.x.-n/d-.o. ...     ...    | 0  n 0 | 0  0  n  0  0 0 | *  *  * m  * *  *  * * | 1  0 0 2 0 1  0 0 | 2 0 2 0
.x.     ... .x.     ...    | 0  4 0 | 0  0  2  2  0 0 | *  *  * * nm *  *  * * | 0  1 0 1 1 0  1 0 | 1 1 1 1
...     ... .x.-m/b-.o.    | 0  m 0 | 0  0  0  m  0 0 | *  *  * *  * n  *  * * | 0  0 1 0 2 0  0 1 | 0 2 0 2
.xo     ... ...     ...&#x | 0  2 1 | 0  0  1  0  2 0 | *  *  * *  * * nm  * * | 0  0 0 0 0 1  2 0 | 0 0 2 1
...     ... .xx     ...&#x | 0  2 2 | 0  0  0  1  2 1 | *  *  * *  * *  * nm * | 0  0 0 0 0 0  2 1 | 0 0 1 2
...     ... ..x-m/b-..o    | 0  0 m | 0  0  0  0  0 m | *  *  * *  * *  *  * 1 | 0  0 0 0 0 0  0 n | 0 0 0 n
---------------------------+--------+-----------------+------------------------+-------------------+--------
xx.-n/d-oo. ...     ...&#x  n  n 0 | n  n  n  0  0 0 | 1  n  0 1  0 0  0  0 0 | m  * * * * *  * * | 2 0 0 0
xx.     ... ox.     ...&#x  2  4 0 | 1  4  2  2  0 0 | 0  2  2 0  1 0  0  0 0 | * nm * * * *  * * | 1 1 0 0
...     ... ox.-m/b-oo.&#x  1  m 0 | 0  m  0  m  0 0 | 0  0  m 0  0 1  0  0 0 | *  * n * * *  * * | 0 2 0 0
.x.-n/d-.o. .x.     ...     0 2n 0 | 0  0 2n  n  0 0 | 0  0  0 2  n 0  0  0 0 | *  * * m * *  * * | 1 0 1 0
.x.     ... .x.-m/b-.o.     0 2m 0 | 0  0  m 2m  0 0 | 0  0  0 0  m 2  0  0 0 | *  * * * n *  * * | 0 1 0 1
.xo-n/d-.oo ...     ...&#x  0  n 1 | 0  0  n  0  n 0 | 0  0  0 1  0 0  n  0 0 | *  * * * * m  * * | 0 0 2 0
.xo     ... .xx     ...&#x  0  4 2 | 0  0  2  2  4 1 | 0  0  0 0  1 0  2  2 0 | *  * * * * * nm * | 0 0 1 1
...     ... .xx-m/b-.oo&#x  0  m m | 0  0  0  m  m m | 0  0  0 0  0 1  0  m 1 | *  * * * * *  * n | 0 0 0 2
---------------------------+--------+-----------------+------------------------+-------------------+--------
xx.-n/d-oo. ox.     ...&#x  n 2n 0 | n 2n 2n  n  0 0 | 1 2n  n 2  n 0  0  0 0 | 2  n 0 1 0 0  0 0 | m * * *
xx.     ... ox.-m/b-oo.&#x  2 2m 0 | 1 2m  m 2m  0 0 | 0  m 2m 0  m 2  0  0 0 | 0  m 2 0 1 0  0 0 | * n * *
.xo-n/d-.oo .xx     ...&#x  0 2n 2 | 0  0 2n  n 2n 1 | 0  0  0 2  n 0 2n  n 0 | 0  0 0 1 0 2  n 0 | * * m *
.xo     ... .xx-m/b-.oo&#x  0 2m 4 | 0  0  m 2m 2m m | 0  0  0 0  m 2  m 2m 1 | 0  0 0 0 1 0  m 2 | * * * n

© 2004-2025
top of page