Acronym ... Name o3β3x4β (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```o3β3x4β

both( . . . . ) | 192 |  1   2   2   2  1 |  1  2  1  2   3   4 |  1  1 2  3
----------------+-----+-------------------+---------------------+-----------
both( . . x . ) |   2 | 96   *   *   *  * |  0  2  1  0   0   0 |  1  0 2  0
both( . s 2 s ) |   2 |  * 192   *   *  * |  0  0  0  0   2   1 |  0  1 1  1
sefa( o3β . . ) |   2 |  *   * 192   *  * |  1  0  0  1   1   0 |  1  1 0  1
sefa( . β3x . ) |   2 |  *   *   * 192  * |  0  1  0  1   0   1 |  1  0 1  1
sefa( . . x4s ) |   2 |  *   *   *   * 96 |  0  0  1  0   0   2 |  0  0 2  1
----------------+-----+-------------------+---------------------+-----------
o3β . .   ♦   3 |  0   0   3   0  0 | 64  *  *  *   *   * |  1  1 0  0
. β3x .   ♦   6 |  3   0   0   3  0 |  * 64  *  *   *   * |  1  0 1  0
both( . . x4s ) ♦   4 |  2   0   0   0  2 |  *  * 48  *   *   * |  0  0 2  0
sefa( o3β3x . ) |   4 |  0   0   2   2  0 |  *  *  * 96   *   * |  1  0 0  1
sefa( o3β 2 β ) |   3 |  0   2   1   0  0 |  *  *  *  * 192   * |  0  1 0  1
sefa( . β3x4β ) |   4 |  0   2   0   1  1 |  *  *  *  *   * 192 |  0  0 1  1
----------------+-----+-------------------+---------------------+-----------
o3β3x .   ♦  12 |  6   0  12  12  0 |  4  4  0  6   0   0 | 16  * *  *
o3β 2 β   ♦   6 |  0   6   6   0  0 |  2  0  0  0   6   0 |  * 32 *  *
. β3x4β   ♦  48 | 24  24   0  24 24 |  0  8 12  0   0  24 |  *  * 8  *
sefa( o3β3x4β ) ♦   6 |  0   2   2   2  1 |  0  0  0  1   2   2 |  *  * * 96

starting figure: o3x3x4x
```