| Acronym | ... |
| Name | hyperbolic o3x3x4o4*a3*c tesselation |
| Circumradius | 1/sqrt(-6) = 0.408248 i |
| Vertex figure | squacu variant oq4xx&#h |
This hypercompact hyperbolic tesselation uses ditetetrat in the sense of an infinite bollohedron and that in the sense of an infinite horohedron as cell types.
Because ditetetrat has the same curvature as the total honeycomb, it allows for a reflection of the remainder at those bollohedra, resulting in the then just paracompact lamina-trunc( o3x3x4o4*a3*c ).
Incidence matrix according to Dynkin symbol
o3x3x4o4*a3*c (N,M,K → ∞) . . . . | 6NMK | 4 8 | 4 4 8 4 | 4 1 1 4 --------------+------+-------------+---------------------+---------------- . x . . | 2 | 12NMK * | 2 0 2 0 | 2 1 0 1 . . x . | 2 | * 24NMK | 0 1 1 1 | 1 0 1 1 --------------+------+-------------+---------------------+---------------- o3x . . | 3 | 3 0 | 8NMK * * * | 1 1 0 0 o . x . *a3*c | 3 | 0 3 | * 8NMK * * | 1 0 1 0 . x3x . | 6 | 3 3 | * * 8NMK * | 1 0 0 1 . . x4o | 4 | 0 4 | * * * 6NMK | 0 0 1 1 --------------+------+-------------+---------------------+---------------- o3x3x . *a3*c ♦ 3M | 3M 3M | M M M 0 | 8NK * * * o3x . o4*a ♦ 6 | 12 0 | 8 0 0 0 | * NMK * * o . x4o4*a3*c ♦ 3K | 0 12K | 0 4K 0 3K | * * 2NM * . x3x4o ♦ 24 | 12 24 | 0 0 8 6 | * * * NMK
© 2004-2026 | top of page |