Acronym | octhix |
Name |
(octahedron, hexateron)-duoprism, vertex figure of tarn |
Circumradius | sqrt(11/12) = 0.957427 |
Volume | sqrt(6)/1440 = 0.00170103 |
Face vector | 36, 162, 348, 456, 391, 218, 75, 14 |
Confer |
|
Incidence matrix according to Dynkin symbol
x3o4o x3o3o3o3o . . . . . . . . | 36 | 4 5 | 4 20 10 | 1 20 40 10 | 5 40 40 5 | 10 40 20 1 | 10 20 4 | 5 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x . . . . . . . | 2 | 72 * | 2 5 0 | 1 10 10 0 | 5 20 10 0 | 10 20 5 0 | 10 10 1 | 5 2 . . . x . . . . | 2 | * 90 | 0 4 4 | 0 4 16 6 | 1 16 24 4 | 4 24 16 1 | 6 16 4 | 4 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o . . . . . . | 3 | 3 0 | 48 * * | 1 5 0 0 | 5 10 0 0 | 10 10 0 0 | 10 5 0 | 5 1 x . . x . . . . | 4 | 2 2 | * 180 * | 0 2 4 0 | 1 8 6 0 | 4 12 4 0 | 6 8 1 | 4 2 . . . x3o . . . | 3 | 0 3 | * * 120 | 0 0 4 3 | 0 4 12 3 | 1 12 12 1 | 3 12 4 | 3 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o4o . . . . . ♦ 6 | 12 0 | 8 0 0 | 6 * * * ♦ 5 0 0 0 | 10 0 0 0 | 10 0 0 | 5 0 x3o . x . . . . ♦ 6 | 6 3 | 2 3 0 | * 120 * * | 1 4 0 0 | 4 6 0 0 | 6 4 0 | 4 1 x . . x3o . . . ♦ 6 | 3 6 | 0 3 2 | * * 240 * | 0 2 3 0 | 1 6 3 0 | 3 6 1 | 3 2 . . . x3o3o . . ♦ 4 | 0 6 | 0 0 4 | * * * 90 | 0 0 4 2 | 0 4 8 1 | 1 8 4 | 2 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o4o x . . . . ♦ 12 | 24 6 | 16 12 0 | 2 8 0 0 | 15 * * * ♦ 4 0 0 0 | 6 0 0 | 4 0 x3o . x3o . . . ♦ 9 | 9 9 | 3 9 3 | 0 3 3 0 | * 160 * * | 1 3 0 0 | 3 3 0 | 3 1 x . . x3o3o . . ♦ 8 | 4 12 | 0 6 8 | 0 0 4 2 | * * 180 * | 0 2 2 0 | 1 4 1 | 2 2 . . . x3o3o3o . ♦ 5 | 0 10 | 0 0 10 | 0 0 0 5 | * * * 36 | 0 0 4 1 | 0 4 4 | 1 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o4o x3o . . . ♦ 18 | 36 18 | 24 36 6 | 3 24 12 0 | 3 8 0 0 | 20 * * * | 3 0 0 | 3 0 x3o . x3o3o . . ♦ 12 | 12 18 | 4 18 12 | 0 6 12 3 | 0 4 3 0 | * 120 * * | 1 2 0 | 2 1 x . . x3o3o3o . ♦ 10 | 5 20 | 0 10 20 | 0 0 10 10 | 0 0 5 2 | * * 72 * | 0 2 1 | 1 2 . . . x3o3o3o3o ♦ 6 | 0 15 | 0 0 20 | 0 0 0 15 | 0 0 0 6 | * * * 6 | 0 0 4 | 0 4 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o4o x3o3o . . ♦ 24 | 48 36 | 32 72 24 | 4 48 48 6 | 6 32 12 0 | 4 8 0 0 | 15 * * | 2 0 x3o . x3o3o3o . ♦ 15 | 15 30 | 5 30 30 | 0 10 30 15 | 0 10 15 3 | 0 5 3 0 | * 48 * | 1 1 x . . x3o3o3o3o ♦ 12 | 6 30 | 0 15 40 | 0 0 20 30 | 0 0 15 12 | 0 0 6 2 | * * 12 | 0 2 ----------------+----+-------+------------+--------------+---------------+-------------+----------+---- x3o4o x3o3o3o . ♦ 30 | 60 60 | 40 120 60 | 5 80 120 30 | 10 80 60 6 | 10 40 12 0 | 5 8 0 | 6 * x3o . x3o3o3o3o ♦ 18 | 18 45 | 6 45 60 | 0 15 60 45 | 0 20 45 18 | 0 15 18 3 | 0 6 3 | * 8
o3x3o x3o3o3o3o . . . . . . . . | 36 | 4 5 | 2 2 20 10 | 1 10 10 40 10 | 5 20 20 40 5 | 10 20 20 20 1 | 10 10 10 4 | 5 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ . x . . . . . . | 2 | 72 * | 1 1 5 0 | 1 5 5 10 0 | 5 10 10 10 0 | 10 10 10 5 0 | 10 5 5 1 | 5 1 1 . . . x . . . . | 2 | * 90 | 0 0 4 4 | 0 2 2 16 6 | 1 8 8 24 4 | 4 12 12 16 1 | 6 8 8 4 | 4 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x . . . . . . | 3 | 3 0 | 24 * * * | 1 5 0 0 0 | 5 10 0 0 0 | 10 10 0 0 0 | 10 5 0 0 | 5 1 0 . x3o . . . . . | 3 | 3 0 | * 24 * * | 1 0 5 0 0 | 5 0 10 0 0 | 10 0 10 0 0 | 10 0 5 0 | 5 0 1 . x . x . . . . | 4 | 2 2 | * * 180 * | 0 1 1 4 0 | 1 4 4 6 0 | 4 6 6 4 0 | 6 4 4 1 | 4 1 1 . . . x3o . . . | 3 | 0 3 | * * * 120 | 0 0 0 4 3 | 0 2 2 12 3 | 1 6 6 12 1 | 3 6 6 4 | 3 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x3o . . . . . ♦ 6 | 12 0 | 4 4 0 0 | 6 * * * * ♦ 5 0 0 0 0 | 10 0 0 0 0 | 10 0 0 0 | 5 0 0 o3x . x . . . . ♦ 6 | 6 3 | 2 0 3 0 | * 60 * * * | 1 4 0 0 0 | 4 6 0 0 0 | 6 4 0 0 | 4 1 0 . x3o x . . . . ♦ 6 | 6 3 | 0 2 3 0 | * * 60 * * | 1 0 4 0 0 | 4 0 6 0 0 | 6 0 4 0 | 4 0 1 . x . x3o . . . ♦ 6 | 3 6 | 0 0 3 2 | * * * 240 * | 0 1 1 3 0 | 1 3 3 3 0 | 3 3 3 1 | 3 1 1 . . . x3o3o . . ♦ 4 | 0 6 | 0 0 0 4 | * * * * 90 | 0 0 0 4 2 | 0 2 2 8 1 | 1 4 4 4 | 2 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x3o x . . . . ♦ 12 | 24 6 | 8 8 12 0 | 2 4 4 0 0 | 15 * * * * ♦ 4 0 0 0 0 | 6 0 0 0 | 4 0 0 o3x . x3o . . . ♦ 9 | 9 9 | 3 0 9 3 | 0 3 0 3 0 | * 80 * * * | 1 3 0 0 0 | 3 3 0 0 | 3 1 0 . x3o x3o . . . ♦ 9 | 9 9 | 0 3 9 3 | 0 0 3 3 0 | * * 80 * * | 1 0 3 0 0 | 3 0 3 0 | 3 0 1 . x . x3o3o . . ♦ 8 | 4 12 | 0 0 6 8 | 0 0 0 4 2 | * * * 180 * | 0 1 1 2 0 | 1 2 2 1 | 2 1 1 . . . x3o3o3o . ♦ 5 | 0 10 | 0 0 0 10 | 0 0 0 0 5 | * * * * 36 | 0 0 0 4 1 | 0 2 2 4 | 1 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x3o x3o . . . ♦ 18 | 36 18 | 12 12 36 6 | 3 12 12 12 0 | 3 4 4 0 0 | 20 * * * * | 3 0 0 0 | 3 0 0 o3x . x3o3o . . ♦ 12 | 12 18 | 4 0 18 12 | 0 6 0 12 3 | 0 4 0 3 0 | * 60 * * * | 1 2 0 0 | 2 1 0 . x3o x3o3o . . ♦ 12 | 12 18 | 0 4 18 12 | 0 0 6 12 3 | 0 0 4 3 0 | * * 60 * * | 1 0 2 0 | 2 0 1 . x . x3o3o3o . ♦ 10 | 5 20 | 0 0 10 20 | 0 0 0 10 10 | 0 0 0 5 2 | * * * 72 * | 0 1 1 1 | 1 1 1 . . . x3o3o3o3o ♦ 6 | 0 15 | 0 0 0 20 | 0 0 0 0 15 | 0 0 0 0 6 | * * * * 6 | 0 0 0 4 | 0 2 2 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x3o x3o3o . . ♦ 24 | 48 36 | 16 16 72 24 | 4 24 24 48 6 | 6 16 16 12 0 | 4 4 4 0 0 | 15 * * * | 2 0 0 o3x . x3o3o3o . ♦ 15 | 15 30 | 5 0 30 30 | 0 10 0 30 15 | 0 10 0 15 3 | 0 5 0 3 0 | * 24 * * | 1 1 0 . x3o x3o3o3o . ♦ 15 | 15 30 | 0 5 30 30 | 0 0 10 30 15 | 0 0 10 15 3 | 0 0 5 3 0 | * * 24 * | 1 0 1 . x . x3o3o3o3o ♦ 12 | 6 30 | 0 0 15 40 | 0 0 0 20 30 | 0 0 0 15 12 | 0 0 0 6 2 | * * * 12 | 0 1 1 ----------------+----+-------+---------------+----------------+-----------------+---------------+-------------+------ o3x3o x3o3o3o . ♦ 30 | 60 60 | 20 20 120 60 | 5 40 40 120 30 | 10 40 40 60 6 | 10 20 20 12 0 | 5 4 4 0 | 6 * * o3x . x3o3o3o3o ♦ 18 | 18 45 | 6 0 45 60 | 0 15 0 60 45 | 0 20 0 45 18 | 0 15 0 18 3 | 0 6 0 3 | * 4 * . x3o x3o3o3o3o ♦ 18 | 18 45 | 0 6 45 60 | 0 0 15 60 45 | 0 0 20 45 18 | 0 0 15 18 3 | 0 0 6 3 | * * 4
ox3oo3oo3oo xx3oo4oo&#x → height = sqrt(3/5) = 0.774597 ...
xo ox3oo3oo xx3oo4oo&#x → height = sqrt(3/8) = 0.612372 ...
xo3oo ox3oo xx3oo4oo&#x → height = 1/sqrt(3) = 0.577350 ...
ox3oo3oo3oo oo3xx3oo&#x → height = sqrt(3/5) = 0.774597 ...
xo ox3oo3oo oo3xx3oo&#x → height = sqrt(3/8) = 0.612372 ...
xo3oo ox3oo oo3xx3oo&#x → height = 1/sqrt(3) = 0.577350 ...
xo3ox xx3oo3oo3oo3oo&#x → height = 1/sqrt(2) = 0.707107 ...
© 2004-2025 | top of page |