Acronym odnit
Name octadiminished penteractitriacontiditeron
Circumradius sqrt(3/2) = 1.224745
Lace hyper city
in approx. ASCII-art
    x4o    
           
           
x4o o4q x4o
           
           
    x4o    
x4o o4q x4o
           
           
o4q     o4q
           
           
x4o o4q x4o
    x4o    
           
           
x4o o4q x4o
           
           
    x4o    
(per layer: cytau tes || rit || cytau tes)
Face vector 72, 384, 556, 292, 50
Confer
uniform relative:
nit  
related CRFs:
bodnit  

The above lace hypercity shows that odnit can be derived from nit as the reduction of the vertices of a q-scaled cube.


Incidence matrix according to Dynkin symbol

((ox4qo xo3ox4oo))&#zx   → height = 0
(tegum sum of (q,x)-squoct and gyro squaco)

  o.4o. o.3o.4o.       | 24  * |  4   8  0  0 |  4  4  8   8  0  0  0 | 1  4  4  2  8  0  0 |  4 1 2 0
  .o4.o .o3.o4.o       |  * 48 |  0   4  2  4 |  0  4  2   8  1  8  2 | 0  2  8  2  4  4  4 |  4 2 1 2
-----------------------+-------+--------------+-----------------------+---------------------+---------
  .. .. x. .. ..       |  2  0 | 48   *  *  * |  2  0  2   0  0  0  0 | 1  1  0  0  4  0  0 |  2 0 2 0
  oo4oo oo3oo4oo  &#x  |  1  1 |  * 192  *  * |  0  1  1   2  0  0  0 | 0  1  2  1  2  0  0 |  2 1 1 0
  .x .. .. .. ..       |  0  2 |  *   * 48  * |  0  2  0   0  1  4  0 | 0  1  4  0  0  4  2 |  2 2 0 2
  .. .. .. .x ..       |  0  2 |  *   *  * 96 |  0  0  0   2  0  2  1 | 0  0  2  1  2  1  2 |  2 1 1 1
-----------------------+-------+--------------+-----------------------+---------------------+---------
  .. .. x.3o. ..       |  3  0 |  3   0  0  0 | 32  *  *   *  *  *  * | 1  0  0  0  2  0  0 |  1 0 2 0
  ox .. .. .. ..  &#x  |  1  2 |  0   2  1  0 |  * 96  *   *  *  *  * | 0  1  2  0  0  0  0 |  2 1 0 0
  .. .. xo .. ..  &#x  |  2  1 |  1   2  0  0 |  *  * 96   *  *  *  * | 0  1  0  0  2  0  0 |  2 0 1 0
  .. .. .. ox ..  &#x  |  1  2 |  0   2  0  1 |  *  *  * 192  *  *  * | 0  0  1  1  1  0  0 |  1 1 1 0
  .x4.o .. .. ..       |  0  4 |  0   0  4  0 |  *  *  *   * 12  *  * | 0  0  0  0  0  4  0 |  0 2 0 2
  .x .. .. .x ..       |  0  4 |  0   0  2  2 |  *  *  *   *  * 96  * | 0  0  1  0  0  1  1 |  1 1 0 1
  .. .. .o3.x ..       |  0  3 |  0   0  0  3 |  *  *  *   *  *  * 32 | 0  0  0  0  2  0  2 |  2 0 1 1
-----------------------+-------+--------------+-----------------------+---------------------+---------
  .. .. x.3o.4o.         6  0 | 12   0  0  0 |  8  0  0   0  0  0  0 | 4  *  *  *  *  *  * |  0 0 2 0
  ox .. xo .. ..  &#x    2  2 |  1   4  1  0 |  0  2  2   0  0  0  0 | * 48  *  *  *  *  * |  2 0 0 0
  ox .. .. ox ..  &#x    1  4 |  0   4  2  2 |  0  2  0   2  0  1  0 | *  * 96  *  *  *  * |  1 1 0 0
((.. qo .. ox4oo))&#zx   2  4 |  0   8  0  4 |  0  0  0   8  0  0  0 | *  *  * 24  *  *  * |  0 1 1 0
  .. .. xo3ox ..  &#x    3  3 |  3   6  0  3 |  1  0  3   3  0  0  1 | *  *  *  * 64  *  * |  1 0 1 0
  .x4.o .. .x ..         0  8 |  0   0  8  4 |  0  0  0   0  2  4  0 | *  *  *  *  * 24  * |  0 1 0 1
  .x .. .o3.x ..         0  6 |  0   0  3  6 |  0  0  0   0  0  3  2 | *  *  *  *  *  * 32 |  1 0 0 1
-----------------------+-------+--------------+-----------------------+---------------------+---------
  ox .. xo3ox ..  &#x    3  6 |  3  12  3  6 |  1  6  6   6  0  3  2 | 0  3  3  0  2  0  1 | 32 * * *
((ox4qo .. ox4oo))&#zx   4 16 |  0  32 16 16 |  0 16  0  32  4 16  0 | 0  0 16  4  0  4  0 |  * 6 * *
((.. qo xo3ox4oo))&#zx  12 12 | 24  48  0 24 | 16  0 24  48  0  0  8 | 2  0  0  6 16  0  0 |  * * 4 *
  .x4.o .o3.x ..         0 12 |  0   0 12 12 |  0  0  0   0  3 12  4 | 0  0  0  0  0  3  4 |  * * * 8

© 2004-2026
top of page